Skip to main content
Log in

Applicability of gas-phase isotope exchange method for investigation of porous materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen transport in ceramic oxide materials has been actively explored over the past decades. This is due to the desire to design high-temperature electrochemical devices for energy conversion. The research of oxygen transport is connected with necessity in understanding of processes proceeding between oxide materials and oxygen of gas phase. It is known that some functional parts of electrochemical devices have porous structure. Known methods for analyzing the kinetic interaction of oxygen in the gas phase and oxygen oxide, such as the use of 18O-labeled oxygen, are not always applicable for the study of porous materials. The paper shows the applicability of the isotope exchange method with the gas phase analysis to investigate porous ceramic materials using the La0.6Sr0.4MnO3–δ catalytic materials for oxygen reduction reaction. These measurements were taken in situ on materials with different porosity at temperature 800 °C and oxygen pressure 0.67 kPa. This paper shows the relationship between the intrinsic heterogeneous exchange rate (rH) and oxygen diffusion coefficient (D), and the effective apparent values obtained on the porous sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Evarestov RA (2012) Quantum chemistry of solids, LCAO treatment of crystals and nanostructures. Springer series in solid-state sciences, 2nd edn. Springer, Berlin

    Google Scholar 

  2. Polfus JM, Yildiz B, Tuller HL (2018) Origin of fast oxide ion diffusion along grain boundaries in Sr-doped LaMnO3. Phys Chem Chem Phys 20:19142–19150

    Article  CAS  PubMed  Google Scholar 

  3. Suntsov AY, Leonidov IA, Patrakeev MV, Kozhevnikov VL (2014) The impact of oxygen nonstoichiometry upon partial molar thermodynamic quantities in PrBaCo2O5+δ. J Solid State Chem 213:93–97

    Article  CAS  Google Scholar 

  4. Eglitis RI, Popov AI (2018) Ab initio calculations for the polar (0 0 1) surfaces of YAlO3. Nucl Instrum Methods Phys Res, Sect B 434:1–5

    Article  CAS  Google Scholar 

  5. Eglitis RI, Popov AI (2019) Comparative ab initio calculations for ABO3 perovskite (001), (011) and (111) as well as YAlO3 (001) surfaces and F centers. J Nano- Electron Phys 11(1):01001

    Article  CAS  Google Scholar 

  6. Huber A-K, Falk M, Rohnke M, Luerßen B, Gregoratti L, Amati M, Janek J (2012) In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O3±δ. Phys Chem Chem Phys 14:751–758

    Article  CAS  PubMed  Google Scholar 

  7. Navickas E, Huber TM, Chen Y, Hetaba W, Holzlechner G, Rupp G, Stöger-Pollach M, Friedbacher G, Hutter H, Yildiz B, Fleig J (2015) Fast oxygen exchange and diffusion kinetics of grain boundaries in Sr-doped LaMnO3 thin films. Phys Chem Chem Phys 17:7659–7669

    Article  CAS  PubMed  Google Scholar 

  8. Farlenkov AS, Anan’ev MV (2015) Modeling of a microstructure and calculation a tortuosity factor for cathodic materials of LSM–YSZ. Chimica Techno Acta 2(1):16–27

    Article  Google Scholar 

  9. Miyoshi K, Miyamae T, Iwai H, Saito M, Kishimoto M, Yoshida H (2016) Exchange current model for (La0.8Sr0.2)(0.95)MnO3 (LSM) porous cathode for solid oxide fuel cells. J Power Sources 315:63–69

    Article  CAS  Google Scholar 

  10. Kuklja MM, Kotomin EA, Merkle R, Mastrikov YA, Maier J (2013) Combined theoretical and experimental analysis of processes determining cathode performance in solid oxidefuel cells. Phys Chem Chem Phys 15:5443–5471

    Article  CAS  PubMed  Google Scholar 

  11. Cao Y, Gadre MJ, Ngo AT, Adler SB, Morgan DD (2019) Factors controlling surface oxygen exchange in oxides. Nat Commun 10:1346

    Article  PubMed  PubMed Central  Google Scholar 

  12. Osinkin DA, Bronin DI, Beresnev SM, Bogdanovich NM, Zhuravlev VD, Vdovin GK, Demyanenko TA (2014) Thermal expansion, gas permeability, and conductivity of Ni-YSZ anodes produced by different techniques. J Solid State Electrochem 18:149–156

    Article  CAS  Google Scholar 

  13. Boreskov GK (1986) Heterogeneous catalysis. Nauka, Moscow

    Google Scholar 

  14. Sanyal J, Goldin GM, Zhu H, Kee RJ (2010) A particle-based model for predicting the effective conductivities of composite electrodes. J Power Sources 195:6671–6679

    Article  CAS  Google Scholar 

  15. Kenney B, Valdmanis M, Baker C, Pharoah JG, Karan K (2009) Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes. J Power Sources 189:1051–1059

    Article  CAS  Google Scholar 

  16. Janardhanan VM, Heuveline V, Deutschmann O (2008) Three-phase boundary length in solid-oxide fuel cells: a mathematical model. J Power Sources 178:368–372

    Article  CAS  Google Scholar 

  17. Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 143(11):3554–3564

    Article  CAS  Google Scholar 

  18. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843

    Article  CAS  PubMed  Google Scholar 

  19. Adler SB (2000) Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ion 135:603–612

    Article  CAS  Google Scholar 

  20. Osinkin DA, Beresnev SM, Bogdanovich NM (2018) Influence of Pr6O11 on oxygen electroreduction kinetics and electrochemical performance of Sr2Fe1.5Mo0.5O6-δ based cathode. J Power Sources 392:41–47

    Article  CAS  Google Scholar 

  21. Antonova EP, Khodimchuk AV, Usov GR, Tropin ES, Farlenkov AS, Khrustov AV, Ananyev MV (2019) EIS analysis of electrode kinetics for La2NiO4+δ cathode in contact with Ce0.8Sm0.2O1.9 electrolyte: from DRT analysis to physical model of the electrochemical process. J Solid State Electrochem 23:1279–1287

    Article  CAS  Google Scholar 

  22. Osinkin DA (2019) Kinetics of CO oxidation and redox cycling of Sr2Fe1.5Mo0.5O6-δ electrode for symmetrical solid state electrochemical devices. J Power Sources 418:17–23

    Article  CAS  Google Scholar 

  23. Marshenya SN, Politov BV, Osinkin DA, Suntsov AY, Kozhevnikov VL (2018) Functional properties and electrochemical performance of dual-phase Pr0.9Y0.1BaCo2O6−δ–Ce0.8Sm0.2O1.9 composite cathodes. J Solid State Electrochem 22:1863–1869

    Article  CAS  Google Scholar 

  24. Ezin AN, Tsidilkovski VI, Kurumchin EK (1996) Isotopic exchange and diffusion of oxygen in oxides with different bulk and subsurface diffusivities. Solid State Ion 84:105–112

    Article  CAS  Google Scholar 

  25. Parfenov MV, Starokon EV, Semikolenov SV, Panov GI (2009) O2 isotopic exchange in the presence of O− anion radicals on the FeZSM-5 surface. J Catal 263:173–180

    Article  CAS  Google Scholar 

  26. Porotnikova N, Khodimchuk A, Ananyev M, Eremin V, Tropin E, Farlenkov A, Pikalova E, Fetisov A (2018) Oxygen isotope exchange in praseodymium nickelate. J Solid State Electrochem 22(7):2115–2126

    Article  CAS  Google Scholar 

  27. Kan CC, Kan HH, Van Assche FM, Armstrong EN, Wachsman ED (2008) J Electrochem Soc 155(10):B985–B993

    Article  CAS  Google Scholar 

  28. Manning PS, Sirman JD, Kilner JA (1997) Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. Solid State Ion 93:125–132

    Article  Google Scholar 

  29. De Souza RA, Kilner JA (1998) Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: part I. oxygen tracer diffusion. Solid State Ion 106:175–187

    Article  Google Scholar 

  30. Armstrong EN, Duncan KL, Oh DJ, Weaver JF, Wachsman ED (2011) Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes. J Electrochem Soc 158(5):B492–B499

    Article  CAS  Google Scholar 

  31. Armstrong EN, Duncan KL, Wachsman ED (2013) Effect of a and B-site cations on surface exchange coefficient for ABO3 perovskite materials. Phys Chem Chem Phys 15:2298–2308

    Article  CAS  PubMed  Google Scholar 

  32. Bouwmeester HJM, Song C, Zhu J, Yi J, Annaland MS, Boukamp BA (2009) A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Phys Chem Chem Phys 11:9640–9643

    Article  CAS  PubMed  Google Scholar 

  33. Yoo C-Y, Bouwmeester HJM (2012) Oxygen surface exchange kinetics of SrTi1−xFexO3−δ mixed conducting oxides. Phys Chem Chem Phys 14:11759–11765

    Article  CAS  PubMed  Google Scholar 

  34. Shannon SL, Goodwin JG (1995) Characterization of catalytic surfaces by isotopic-transient kinetics during steady-state reaction. Chem Rev 95(3):677–695

    Article  CAS  Google Scholar 

  35. Sadovskaya EМ, Ivanova YA, Pinaeva LG, Grasso G, Kuznetsova TG, Veen A, Sadykov VA, Mirodatos C (2007) Kinetics of oxygen exchange over CeO2−ZrO2 fluorite-based catalysts. J Phys Chem A 111:4498–4505

    Article  CAS  PubMed  Google Scholar 

  36. AYa F, Kurennykh TE, Petrova SA, Vykhodets EV, Vykhodets VB, Zakharov RG (2009) Oxygen isotope exchange in nanocrystal oxide powders. Journal of Nano Research 7:33–41

    Article  Google Scholar 

  37. Doshi R, Routbort JL, Alcock CB (1995) Diffusion in mixed conducting oxides: a review. Defect Diffus Forum 127–128:39–58

    Article  Google Scholar 

  38. Wang D, Poologasundarampillai G, Bergh W, Chater RJ, Kasuga T, Jones JR, McPhail DS (2014) Strategies for the chemical analysis of highly porous bone scaffolds using secondary ion mass spectrometry. Biomed Mater 9:015013

    Article  PubMed  Google Scholar 

  39. Leitgeb M, Zellner C, Hufnagl C, Schneider M, Schwab S, Hutter H, Schmid U (2017) Stacked layers of different porosity in 4H SiC substrates applying a photoelectrochemical approach. J Electrochem Soc 164(12):E337–E347

    Article  CAS  Google Scholar 

  40. Canham LT, Blackmore GW (1991) SIMS analysis of the contamination of porous silicon by ambient air. MRS Online Proceeding 256:63–67

    Article  Google Scholar 

  41. Hofmann JP, Rohnke M, Weckhuysen BM (2014) Recent advances in secondary ion mass spectrometry of solid acid catalysts: large zeolite crystals under bombardment. Phys Chem Chem Phys 16:5465–5474

    Article  CAS  PubMed  Google Scholar 

  42. Kiebach R, Norrman K, Chatzichristodoulou C, Chen M, Sun X, Ebbesen SD, Mogensen MB, Hendriksen PV (2014) TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation. Dalton Trans 43:14949–14958

    Article  CAS  PubMed  Google Scholar 

  43. Bershitskaya NM, Ananyev MV, Kurumchin EK, Gavrilyuk AL, Pankratov AA (2013) Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium manganites. Russ J Electrochem 49:963–974

    Article  CAS  Google Scholar 

  44. Kan CC(2009) PhD thesis. Use of oxygen isotopic exchange to explore catalytic activity and the mechanism of oxygen reduction on oxides. University of California, pp 114

  45. Kurteeva AA, Bogdanovich NM, Bronin DI, Porotnikova NM, Vdovin GK, Pankratov AA, Beresnev SM, Kuz’mina LA (2010) Options for adjustment of microstructure and conductivity of cathodic substrates of La(Sr)MnO3. Russ J Electrochem 46:811–819

    Article  CAS  Google Scholar 

  46. Ananyev MV, Gavrilyuk AL (2010) Abstracts of 41 Russia youth conference. Problems of Theoretical and Applied Mathematics, Yekaterinburg IMM UB RAS:515

    Google Scholar 

  47. Ananyev MV, Kurumchin EK (2010) Interphase exchange and diffusion of oxygen in lanthanum-strontium cobaltites doped with iron. Russ J Phys Chem A 84:1039–1044

    Article  CAS  Google Scholar 

  48. Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, Smirnov AS, Kolchugin AA, Porotnikova NM, Khodimchuk AV, Berenov AV, Kurumchin EK (2016) Oxygen isotope exchange in La2NiO4±δ. Phys Chem Chem Phys 18:9102–9111

    Article  CAS  PubMed  Google Scholar 

  49. Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Oxygen tracer diffusion coefficient of (La,Sr)MnO3±δ. Solid State Ion 86–88:1197–1201

    Article  Google Scholar 

  50. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ion 53–56:597–605

    Article  Google Scholar 

  51. Berenov AV, MacManus_Driscoll JL, Kilner JA (1999) Oxygen tracer diffusion in undoped lanthanum manganites. Solid State Ion 122:41–49

    Article  CAS  Google Scholar 

  52. Tikhonova LA, Samal GI, Zhuk PP, Tonoyan AA, Vecher AA (1990) Physicochemical properties of lanthanum manganite doped with strontium. Inorg Mater 26(1):149–153

    Google Scholar 

  53. Pabst W, Gregorová E (2006) A new percolation-threshold relation for the porosity dependence of thermal conductivity. Ceram Int 32:89–91

    Article  CAS  Google Scholar 

  54. Coble RL, Kingery WD (1956) Effect of porosity on physical properties of sintered alumina. J Am Ceram Soc 39:377–384

    Article  Google Scholar 

  55. McLachlan DS (1986) Equation for the conductivity of metal – insulator mixtures. J Phys C Solid State Phys 19:1339–1345

    Article  Google Scholar 

  56. Plessis JP (1999) Introducing a percolation threshold in pore-scale modelling. Phys Chem Earth Solid Earth Geod 24(7):617–620

    Article  Google Scholar 

Download references

Acknowledgments

The work was done using Unique scientific setup “Isotopic exchange” of the Shared access center “Composition of Compounds.” The authors would like to thank A.A. Pankratov, SOFC laboratory, IHTE UB RAS for his assistance in performing the SEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Porotnikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porotnikova, N.M., Ananyev, M.V. Applicability of gas-phase isotope exchange method for investigation of porous materials. J Solid State Electrochem 25, 1151–1159 (2021). https://doi.org/10.1007/s10008-020-04896-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04896-5

Keywords

Navigation