Skip to main content
Log in

Functional properties and electrochemical performance of dual-phase Pr0.9Y0.1BaCo2O6−δ–Ce0.8Sm0.2O1.9 composite cathodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The dual-phase composites are obtained by mixing perovskite-like cobaltite Pr0.9Y0.1BaCo2O6–δ and samarium-doped ceria Ce0.8Sm0.2O1.9 in weight proportions 90/10, 70/30, and 50/50. The absence of chemical interactions between the components at heating up to 1100 °С is confirmed by X-ray powder diffraction measurements. The partial dilution of the cobaltite is accompanied with decreasing thermal expansion of the composite. The impedance measurements reveal linear changes of the area-specific resistance with inverse temperature that correspond to the activation energy values of about 0.9 and 0.8 eV for 70/30 and 50/50 composites, respectively. The overvoltage for oxygen electro-reduction with current density 1 A/cm2 does not exceed 80 mV at 700 °С. The high electrical conductivity, moderate thermal expansion, and appreciable electrochemical activity single out the mixture of Pr0.9Y0.1BaCo2O6–δ (70 wt%) and Ce0.8Sm0.2O1.9 (30 wt%) as a promising composite cathode material for intermediate temperature solid oxide fuel cell applications (IT–SOFC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adler SB (2004) Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  2. Tarancon A, Burriel J, Santiso J, Skinner SJ, Kilner JA (2010) Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 20(19):3799–3813. https://doi.org/10.1039/b922430k

    Article  CAS  Google Scholar 

  3. Pelosato R, Cordaro G, Stucchi D, Christiani C, Dotelli G (2015) Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: a brief review. J Power Sources 298:46–67. https://doi.org/10.1016/j.jpowsour.2015.08.034

    Article  CAS  Google Scholar 

  4. Dusastre V, Kilner JA (1999) Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126(1–2):163–174. https://doi.org/10.1016/S0167-2738(99)00108-3

    Article  CAS  Google Scholar 

  5. Kim JH, Manthiram A (2015) Layered LnBaCo2O5+δperovskite cathodes for solid oxide fuel cells: an overview and perspective. J Mater Chem 3(48):24195–24210. https://doi.org/10.1039/C5TA06212H

    Article  CAS  Google Scholar 

  6. RA C–G, McIntosh S (2012) Solid State Ionics 228:14–18

    Article  Google Scholar 

  7. Volkova NE, Gavrilova LY, Cherepanov VA, Aksenova TV, Kolotygin VA, Kharton VV (2013) Synthesis, crystal structure and properties of SmBaCo2−xFexO5+δ. J Solid State Chem 204:219–223. https://doi.org/10.1016/j.jssc.2013.06.001

    Article  CAS  Google Scholar 

  8. Kim JH, Prado F, Manthiram A (2008) Characterization of GdBa1−xSrxCo2O5+δ (0≤x≤1.0) double perovskites as cathodes for solid oxide fuel cells. J Electrochem Soc 155(10):B1023. https://doi.org/10.1149/1.2965792

    Article  CAS  Google Scholar 

  9. Lui L, Guo R, Wang S, Yang Y, Yin D (2014) Ceram Int 40:16393–16398

    Article  Google Scholar 

  10. Xue J, Shen Y, He T (2011) Double-perovskites YBaCo2−xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells. J Power Sources 196(8):3729–3735. https://doi.org/10.1016/j.jpowsour.2010.12.071

    Article  CAS  Google Scholar 

  11. Zhang K, Ge L, Ran R, Shao Z, Liu S (2008) Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater 56(17):4876–4889. https://doi.org/10.1016/j.actamat.2008.06.004

    Article  CAS  Google Scholar 

  12. Pelosato R, Donazzi A, Dotelli G, Cristiani C, Natali Sora I, Mariani M (2014) Electrical characterization of co-precipitated LaBaCo2O5+δ and YBaCo2O5+δ oxides. J Eur Ceram Soc 34(16):4257–4272. https://doi.org/10.1016/j.jeurceramsoc.2014.07.005

    Article  CAS  Google Scholar 

  13. Zheng K, Swierczek K, Bratek J, Klimkowicz A (2014) Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics 262:354–358. https://doi.org/10.1016/j.ssi.2013.11.009

    Article  CAS  Google Scholar 

  14. Meng F, Xia T, Wang J, Shi Z, Lian J, Zhao H, Bassat J-M, Grenier J-C (2014) Int J Hydrog Energy 39(9):4531–4543. https://doi.org/10.1016/j.ijhydene.2014.01.008

    Article  CAS  Google Scholar 

  15. Jiang L, Li F, Wei T, Zeng R, Huang Y (2014) Evaluation of Pr1+xBa1-xCo2O5+δ (x = 0−0.30) as cathode materials for solid-oxide fuel cells. Electrochim Acta 133:364–372. https://doi.org/10.1016/j.electacta.2014.04.064

    Article  CAS  Google Scholar 

  16. Jin F, Shen Y, Wang R, He T (2013) Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells. J Power Sources 234:244–251. https://doi.org/10.1016/j.jpowsour.2013.01.172

    Article  CAS  Google Scholar 

  17. Zhao L, Shen J, He B, Chen F, Xia C (2011) Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 36(5):3658–3665. https://doi.org/10.1016/j.ijhydene.2010.12.064

    Article  CAS  Google Scholar 

  18. Zhao H, Zheng Y, Yang C, Shen Y, Du Z, Swierczek K (2013) Electrochemical performance of Pr1−xYxBaCo2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 38(36):16365–16372. https://doi.org/10.1016/j.ijhydene.2013.10.003

    Article  CAS  Google Scholar 

  19. Suntsov AY, Politov BV, Leonidov IA, Patrakeev MV, Kozhevnikov VL (2016) Improved stability and defect structure of yttrium doped cobaltite PrBaCo 2 O 6–δ. Solid State Ionics 295:90–95. https://doi.org/10.1016/j.ssi.2016.08.003

    Article  CAS  Google Scholar 

  20. Dyck CR, Yu ZB, Krstic VD (2004) Thermal expansion matching of Gd1−xSrxCoO3−δ composite cathodes to Ce0.8Gd0.2O1.95 IT-SOFC electrolytes. Solid State Ionics 171(1-2):17–23. https://doi.org/10.1016/j.ssi.2004.02.014

    Article  CAS  Google Scholar 

  21. Xu Q, Huang DP, Zhang F, Chen W, Chen M, Liu HX (2008) Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4Co0.8Fe0.2O3−δ–Ce0.8Sm0.2O2−δ composite cathodes. J Alloys Compd 454(1-2):460–465. https://doi.org/10.1016/j.jallcom.2006.12.132

    Article  CAS  Google Scholar 

  22. Li N, Lu Z, Wei B, Huang XQ, Chen KF, Shang YH, Su WH (2008) Characterization of GdBaCo2O5+δ cathode for IT-SOFCs. J Alloys Compd 454(1-2):274–279. https://doi.org/10.1016/j.jallcom.2006.12.017

    Article  CAS  Google Scholar 

  23. Wang J, Meng F, Xia T, Shi Z, Lian J, Xu C, Zhao H, Bassat JM (2014) Grenier JC. Int J Hydrog Energy 39(32):18392–18404. https://doi.org/10.1016/j.ijhydene.2014.09.041

    Article  CAS  Google Scholar 

  24. Yi K, Sun L, Li Q, Xia T, Huo L, Zhao H, Li J, Lu Z, Bassat J-M, Rougier A, Fourcade S, Grenier J-C (2016) Int J Hydrog Energy 41(24):10228–10238. https://doi.org/10.1016/j.ijhydene.2016.04.248

    Article  CAS  Google Scholar 

  25. Chen D, Ran R, Shao Z (2010) Assessment of PrBaCo2O5+δ+Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. J Power Sources 195(21):7187–7195. https://doi.org/10.1016/j.jpowsour.2010.05.018

    Article  CAS  Google Scholar 

  26. Osinkin DA, Lobachevskaya NI, Kuzmin AV (2017) Transport and electrochemical properties of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 composite as promising anode for solid oxide fuel cells. Rus J Appl Chem 90(1):41–46. https://doi.org/10.1134/S1070427217010074

    Article  CAS  Google Scholar 

  27. Osinkin DA (2016) Long-term tests of Ni–Zr0.9Sc0.1O1.95 anode impregnated with CeO2 in H2 + H2O gas mixtures. Int J Hydrog Energy 41(39):17577–17584. https://doi.org/10.1016/j.ijhydene.2016.07.136

    Article  CAS  Google Scholar 

  28. Johnson D (2002) Scribner Associates, Inc. Southern Pines, NC

    Google Scholar 

  29. Gavrilyuk AL, Osinkin DA, Bronin DI (2017) Rus J Electrochem 54:575–588

    Article  Google Scholar 

  30. Adler SB, Lane JA, Sreele BCH (1996) J Electrochem Soc 143:3553–3564

    Article  Google Scholar 

  31. Boukamp BA (2015) Fourier transform distribution function of relaxation times; application and limitations. Electrochim Acta 154:35–46. https://doi.org/10.1016/j.electacta.2014.12.059

    Article  CAS  Google Scholar 

  32. Saccoccio M, Wan TH, Chen C, Ciucci F (2014) Optimal regularization in distribution of relaxation times applied to electrochemical impedance Spectroscopy: ridge and lasso regression methods—a theoretical and experimental study. Electrochim Acta 147:470–482. https://doi.org/10.1016/j.electacta.2014.09.058

    Article  CAS  Google Scholar 

  33. Hildenbrand N, Nammensma P, Blank DHA, Bouwmeester HJM, Boukamp BA (2013) J Power Sources 283:442–453

    Article  Google Scholar 

  34. Zhang Y, Chen Y, Yan M, Chen F (2015) J Power Sources 238:464–477

    Google Scholar 

  35. Adler SB (1998) Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes. Solid State Ionics 111(1-2):125–134. https://doi.org/10.1016/S0167-2738(98)00179-9

    Article  CAS  Google Scholar 

  36. Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J App Electrochem 18(4):527–531. https://doi.org/10.1007/BF01022246

    Article  CAS  Google Scholar 

  37. Wan Y, Hu B, Xia C (2017) Oxygen reduction at the three-phase boundary of PrBaCo 2 O 5+δ -Sm 0.2 Ce 0.8 O 1.9 composite. Electrochim Acta 252:171–179. https://doi.org/10.1016/j.electacta.2017.08.185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research under grant № 16–33–60202. The DRT analysis of EIS spectra was supported by the Russian Foundation for Basic Research under grant № 16–03–00434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu Suntsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshenya, S.N., Politov, B.V., Osinkin, D.A. et al. Functional properties and electrochemical performance of dual-phase Pr0.9Y0.1BaCo2O6−δ–Ce0.8Sm0.2O1.9 composite cathodes. J Solid State Electrochem 22, 1863–1869 (2018). https://doi.org/10.1007/s10008-018-3894-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3894-2

Keywords

Navigation