Skip to main content
Log in

Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The free-standing PAN/PVdF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes have been prepared by solution casting technique. The thermal stability of composite solid polymer electrolytes is evaluated by TG/DSC analysis, which reveals that the filler incorporated composite samples exhibit high thermal stability up to 500 °C. The XRD analysis demonstrated that the Li0.5La0.5TiO3 nanoparticles significantly reduced the crystallinity of the hybrid PAN/PVdF/LiClO4 polymer films. The FTIR spectra of PAN/PVdF/LiClO4/Li0.5La0.5TiO3 composites show the vibrational band of –CN stretching, CF2 asymmetric stretching, and Ti-O-La stretching which confirmed the complexation between polymer host matrices and Li0.5La0.5TiO3 nanoparticles. The 10 wt% Li0.5La0.5TiO3 nanoparticles embedded PAN/PVdF/LiClO4 solid polymer electrolyte possessed an excellent ionic conductivity of 1.43 × 10−3 S cm−1 at room temperature, which is far better than the filler-free samples (~ 10−5 S cm−1). The incorporation of Li0.5La0.5TiO3 nanoparticles into the PAN/PVdF/LiClO4 polymer electrolyte improves the concentration of free mobile lithium ions and develops Li-ion conduction channels within the crystalline framework. The PAN/PVdF/LiClO4/Li0.5La0.5TiO3 (10 wt%) composite electrolyte exhibited high thermal stability, good discharge capacities of 122, 105, 94, and 80 mAh g−1 at 0.1, 0.5, 1, and 2C rates, and good cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  2. Belous A, Kolbasov G, Kovalenko L, Boldyrev E, Kobylianska S, Liniova B (2018) All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure. J Solid State Electrochem 22(8):2315–2320

    Article  CAS  Google Scholar 

  3. Isikli S, Ryan KM (2020) Recent advances in solid-state polymer electrolytes and innovative ionic liquids-based polymer electrolyte systems. Curr Opin Electrochem 21:188–191

    Article  CAS  Google Scholar 

  4. Hsu ST, Binh TT, Ramesh S, Hanh TTN, Arunkumar R, Ming-Yu L, Sheng-Shu H, Yuh-Lang L, Hsisheng T (2020) Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. J Power Sources 449:227518

    Article  CAS  Google Scholar 

  5. Florjanczyk Z, Zygado-monikowska E, Ostrowska J, Frydrych (2014) A solid polymer electrolytes based on ethylene oxide polymers. Polimery 1:80–87

    Article  CAS  Google Scholar 

  6. Chandra Sekhar P, Naveen Kumar P, Sharma AK (2012) Effect of plasticizer on conductivity and cell parameters of (PMMA+NaClO4) polymer electrolyte system. J Appl Phys 2:1–6

    Google Scholar 

  7. Wright PV, Zheng Y, Bhatt D, Richardson T, Ugar G (1998) Supramolecular order in new polymer electrolytes. Polym Int 47(1):34–42

    Article  CAS  Google Scholar 

  8. Gupta RK, Jung HY, Whang CM (2002) Transport properties of a new Li+ ion-conducting ormolyte:(SiO2–PEG)–LiCF3 SO3. J Mater Chem 12(12):3779–3782

    Article  CAS  Google Scholar 

  9. Sun J, Liao X, Minor AM, Balsara NP, Zuckermann RN (2014) Morphology-conductivity relationship in crystalline and amorphous sequence-defined peptoid block copolymer electrolytes. J Am Chem Soc 136(42):14990–14997

    Article  CAS  PubMed  Google Scholar 

  10. Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23(4):997–1059

    Article  CAS  Google Scholar 

  11. Egashira M, Todo H, Yoshimoto N, Morita M (2008) Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J Power Sources 178(2):729–735

    Article  CAS  Google Scholar 

  12. Li YH, Wu XL, Kim JH, Xin S, Su J, Yan Y, Lee JS, Guo YG (2013) A novel polymer electrolyte with improved high-temperature-tolerance up to 170 1C for high- temperature lithium-ion batteries. J Power Sources 244:234–239

    Article  CAS  Google Scholar 

  13. Sharma JP, Sekhon SS (2007) Nanodispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics 178(5-6):439–445

    Article  CAS  Google Scholar 

  14. Wu N, Cao Q, Wang X, Li X, Deng H (2011) A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries. J Power Sources 19:8638–8643

    Article  CAS  Google Scholar 

  15. Kuo PL, Wu CA, Lu CY, Tsao CH, Hsu CH, Hou SS (2014) High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS Appl Mater Interfaces 6(5):3156–3162

    Article  CAS  PubMed  Google Scholar 

  16. Zenghao W, Yongshuai X, Chonghe X, Shuying S, Lin W, Guanghui Z, Xinqiang W, Luyi Z (2019) Dong X zirconia fiber membranes based on PVDF as high-safety separators for lithium-ion batteries using a papermaking method. J Solid State Electrochem 23:269–276

    Article  CAS  Google Scholar 

  17. Raghavan P, Manuel J, Zhao XH, Kim DS, Ahn JH, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196(16):6742–6749

    Article  CAS  Google Scholar 

  18. Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B (2000) Investigation on the stability of the lithium-polymer electrolyte interface. J Electrochem Soc 14:4448–4452

    Article  Google Scholar 

  19. Wang YJ, Pan Y, Kim D (2006) Conductivity studies on ceramic Li1.3Al0.3Ti1.7 (PO4)3-filled PEO-based solid composite polymer electrolytes. J Power Sources 159(1):690–701

    Article  CAS  Google Scholar 

  20. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110

    Article  CAS  PubMed  Google Scholar 

  21. Inugama LC, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693

    Article  Google Scholar 

  22. Abhilash KP, Christopher Selvin P, Nalini B, Somasundaram K, Sivaraj P, Chandra Bose A (2016) Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries. J Phys Chem Solids 91:114–121

    Article  CAS  Google Scholar 

  23. Sun L, Shi Z, Wang H, Zhang K, Dastan D, Sun K, Fan R (2020) Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P (VDF-HFP) composites. J Mater Chem A 8(11):5750–5757

    Article  CAS  Google Scholar 

  24. Sun L, Shi Z, Liang L, Wei S, Wang H, Dastan D, Sun K, Fan R (2020) Layer-structured BaTiO3/P (VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J Mater Chem C 8(30):10257–10265

    Article  CAS  Google Scholar 

  25. Sivaraj P, Abhilash KP, Nalini B, Christopher Selvin P, Yadav SK, Goel S (2020) Insight into cations substitution on structural and electrochemical properties of nanostructured Li2FeSiO4/C cathodes. J Am Ceram Soc 103(3):1685–1697

    Article  CAS  Google Scholar 

  26. Dastan D (2017) Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl Phys A Mater Sci Process 123:1–13

    Article  CAS  Google Scholar 

  27. Costa CM, Rodrigues LC, Sencadas V, Silva MM, Rocha JG, Lanceros MS (2012) Effect of degree of porosity on the properties of poly (vinylidene fluoride–trifluorethylene) for Li-ion battery separators. J Membr Sci 407:193–201

    Article  CAS  Google Scholar 

  28. Zhong S, Sun C, Gao Y, Cui X (2015) Preparation and characterization of polymer electrolyte membranes based on silicon-containing core-shell structured nanocomposite latex particles. J Power Sources 289:34–40

    Article  CAS  Google Scholar 

  29. Choi SW, Kim JR, Jo SM, Lee WS, Kim YR (2005) Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. J Electrochem Soc 152:989

    Article  CAS  Google Scholar 

  30. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv 7(25):15382–15389

    Article  CAS  Google Scholar 

  31. Lei T, Cai X, Wang X, Yu L, Hu X, Zheng G, Wenlong L, Lingyun W, Dezhi W, Daoheng S, Liwei L (2013) Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv 3(47):24952–24958

    Article  CAS  Google Scholar 

  32. Anantha Iyenger G, Padmanabhan S, Kalayil Manian M, Jin Hee N, Sang Ho K, Chul-Gyun H, Kwang-Pill L (2008) Development of electrospun PVdF/PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  33. Chauhan D, Afreen S, Mishra S, Sankararamakrishnan N (2017) Synthesis, characterization and application of zinc augmented aminated PAN nanofibers towards decontamination of chemical and biological contaminants. J Ind Eng Chem 55:50–64

    Article  CAS  Google Scholar 

  34. Sim LH, Gan SN, Chan CH, Yahya R (2010) ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly (ethylene oxide) blends. Spectrochim Acta A Mol Biomol Spectrosc 76(3-4):287–292

    Article  CAS  PubMed  Google Scholar 

  35. Yang CL, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH (2015) Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF–SiO2 nanocomposite fibers for lithium-ion batteries. J Membr Sci 495:341–350

    Article  CAS  Google Scholar 

  36. Jie J, Liu Y, Cong L, Zhang B, Lu W, Zhang X, Liu J, Xie H, Sun L (2020) High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J Energy Chem 49:80–88

    Article  Google Scholar 

  37. Zhang YZ, Chan CK (2003) Observations of water monomers in supersaturated NaClO4, LiClO4, and Mg(ClO4)2 droplets using Raman spectroscopy. J Phys Chem A 107(31):5956–5962

    Article  CAS  Google Scholar 

  38. Hu W, Li T, Liu X, Dastan D, Ji K, Zhao P (2020) 1550 nm pumped upconversion chromaticity modulation in Er3+ doped double perovskite LiYMgWO6 for anti-counterfeiting. J Alloys Compd 818:152933

    Article  CAS  Google Scholar 

  39. Dastan D, Panahi SL, Chaure NB (2016) Characterization of titania thin films grown by dip-coating technique. J Mater Sci Mater Electron 27:12291–12296

    Article  CAS  Google Scholar 

  40. Kumar PM, Badrinarayanan S, Sastry M (2000) Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358(1-2):122–130

    Article  CAS  Google Scholar 

  41. Abhilash KP, Sivaraj P, Christopher Selvin P, Nalini B, Somasundaram K (2015) Investigation on spin coated LLTO thin film nano-electrolytes for rechargeable lithium ion batteries. Ceram Int 41(10):13823–13829

    Article  CAS  Google Scholar 

  42. Pickup PG (1990) Alternating current impedance study of a polypyrrole-based anion-exchange polymer. Chem Soc Faraday Trans 86(21):3631–3636

    Article  CAS  Google Scholar 

  43. Mecdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  44. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40(13-14):2251–2258

    Article  CAS  Google Scholar 

  45. Dawar A, Chandra A (2012) Electric field driven fractal growth in polymer electrolyte composites: experimental evidence of theoretical simulations. Phys Lett A 376(47-48):3604–3608

    Article  CAS  Google Scholar 

  46. Chiang CY, Reddy JM, Chu PP (2004) Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics 175(1-4):631–635

    Article  CAS  Google Scholar 

  47. Chu PP, Reddy JM, Kao HM (2003) Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ionics 156(1-2):141–153

    Article  CAS  Google Scholar 

  48. Romero M, Faccio R, Mombru AW (2016) Enhancement of lithium conductivity and evidence of lithium dissociation for LLTO-PMMA nanocomposite electrolyte. Mater Lett 172:1–5

    Article  CAS  Google Scholar 

  49. Wang C, Zhang X-W, John Appleby A (2005) Solvent-free composite, PEO-ceramic fiber/mat electrolytes for lithium secondary cells. J Electrochem Soc 152(1):205–209

    Article  CAS  Google Scholar 

  50. Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    Article  CAS  PubMed  Google Scholar 

  51. Zhu X, Yang J, Dastan D, Garmestani H, Fan R, Shi Z (2019) Fabrication of core-shell structured Ni@ BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos Part A 125:105521

    Article  CAS  Google Scholar 

  52. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001

    Article  CAS  Google Scholar 

  53. Subba Reddy CV, Sharma AK, Narasimla Rao VVR (2003) Conductivity and discharge characteristics of polyblend (PVP+ PVA+ KIO3) electrolyte. J Power Sources 114(2):338–345

    Article  CAS  Google Scholar 

  54. Shan K, Yi ZZ, Yin XT, Dastan D, Garmestani H (2020) Y-doped CaZrO3/Co3O4 as novel dense diffusion barrier materials for limiting current oxygen sensor. Dalton Trans 49(25):8549–8556

    Article  CAS  PubMed  Google Scholar 

  55. Dhatarwal P, Sengwa RJ (2020) Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos Commun 17:182–191

    Article  Google Scholar 

  56. Jamalpour S, Ghahramani M, Ghaffarian SR, Javanbakht M (2020) The effect of poly(hydroxyl ethyl methacrylate) on the performance of PVDF/P(MMA-co-HEMA) hybrid gel polymer electrolytes for lithium ion battery application. Polymer 195:122427

    Article  CAS  Google Scholar 

  57. Zuo H, Fu W, Fan R, Dastan D, Wang H, Shi Z (2020) Bilayer carbon nanowires/nickel cobalt hydroxides nanostructures for high-performance supercapacitors. Mater Lett 263:127217

    Article  CAS  Google Scholar 

  58. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. P. Sivaraj would like to thank the Council of Scientific Industrial Research (CSIR), Govt. of India, New Delhi, for providing the necessary financial support through the Senior Research Fellowship (SRF) (File No: 09/0472(181)-2018-EMR-I) for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Christopher Selvin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaraj, P., Abhilash, K.P., Nalini, B. et al. Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries. J Solid State Electrochem 25, 905–917 (2021). https://doi.org/10.1007/s10008-020-04858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04858-x

Keywords

Navigation