Skip to main content
Log in

Electrodeposited polyaniline/Cu2ZnSnSe4 heterojunction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

One-step method for the electrodeposition of thin Cu2ZnSnSe4 (CZTSe) film onto a polyaniline/FTO/glass substrate was developed. Polyaniline film was preliminary obtained also by electrochemical deposition onto the FTO/glass substrate. The nucleation of CZTSe in the course of the film formation on the polyaniline surface was studied by chronoamperometry method. This process can be described by the instantaneous crystallization model. According to SEM data, the films consist of 25–50 nm nanocrystals which can form large crystallites. Photocurrent was established to increase up to 20 times in the CZTSe/polyaniline/FTO/glass heterojunction in comparison with the polyaniline free structure. In the heterojunction, polyaniline acts as a hole transport layer improving the charge transfer to the FTO electrode and preventing circuit shorting because of porosity of the CZTSe film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luther J, Nast M, Fisch MN, Christoffers D, Pfisterer F, Meissner D, Nitsch J, Becker M (2012) Solar technology. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Wienheim

    Google Scholar 

  2. Siebentritt S, Schorr S (2012) Kesterites – a challenging material for solar cells. Prog Photovolt Res Appl 20(5):512–519

    Article  CAS  Google Scholar 

  3. Delbos S (2012) Kësterite thin films for photovoltaics: a review. EPJ Photovoltaics 3:335004

  4. Maeda T, Nakamura S, Wada T (2009) Electronic structure and phase stability of in-free photovoltaic semiconductors, Cu2ZnSnSe4 and Cu2ZnSnS4 by first-principles calculation. Mater Res Soc Symp Proc 1165:1165–M04-03

  5. Katagiri HH (2005) Cu2ZnSnS4 thin film solar cells. Thin Solid Films 480–481:426–432

    Article  Google Scholar 

  6. Seol JS, Lee SY, Lee JC, Nam HD, Kim KH (2003) Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol Energy Mater Sol Cells 75(1-2):155–162

    Article  CAS  Google Scholar 

  7. Moriya K, Tanaka K, Uchiki H (2005) Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition. Jpn J Appl Phys 44(1B):715–717

    Article  CAS  Google Scholar 

  8. Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y (2012) Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layers adsorption and reaction method. Appl Surf Sci 258(19):7678–7682

    Article  CAS  Google Scholar 

  9. Bouroushian M (2010) Electrochemistry of metal chalcogenides. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  10. Septina W, Ikeda S, Kyoraiseki A, Harada T, Matsumura M (2013) Single step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure. Electrochim Acta 88:436–442

    Article  CAS  Google Scholar 

  11. Pawar SM, Pawar BS, Moholkar AV, Choi DS, Yun JH, Moon JH, Kolekar SS, Kim JH (2010) Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochim Acta 55(12):4057–4061

    Article  CAS  Google Scholar 

  12. Juskenas R, Kanapeckaite S, Karpaviciene V, Mockus Z, Pakstas V, Selskiene A, Giraitis R, Niaura G (2012) A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells. Sol Energy Mater Sol Cells 101:277–282

    Article  CAS  Google Scholar 

  13. Henríquez R, Badán A, Greza P, Muñoz E, Vera J, Dalchiele EA, Marotti RE, Gómez H (2011) Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: nucleation and growth mechanism, structural and optical studies. Electrochim Acta 56:4890–4895

    Article  Google Scholar 

  14. Johnson DR (2000) Microstructure of electrodeposited CdS/CdTe cells. Thin Solid Films 361–362:321–326

    Article  Google Scholar 

  15. Dergacheva MB, Urazov KA (2013) Electrodeposition of CuInXGa1-XSe2 thin films from sulfosalicylic acid. Electrochim Acta 107:120–125

    Article  CAS  Google Scholar 

  16. Dergacheva MB, Urazov KA, Nurtazina AE (2017) Electrodeposition of thin Cu2ZnSnS4 films. Russ J Electrochem 53(3):324–332

    Article  CAS  Google Scholar 

  17. Po R, Carbonera C, Bernardi A, Camaioni N (2011) The role of buffer layers in polymer solar cells. Energy Environ Sci 4(2):285–310

    Article  CAS  Google Scholar 

  18. Braun S, Salaneck WR, Fahlman M (2009) Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater 21(14-15):1450–1472

    Article  CAS  Google Scholar 

  19. Yip HL, Jen AKY (2012) Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci 5(3):5994–6011

    Article  CAS  Google Scholar 

  20. Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20:2499–2512

    Article  CAS  Google Scholar 

  21. Crispin A, Crispin X, Fahlman M, Berggren M, Salaneck WR (2006) Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces. Appl Phys Lett 89(21):213503–213506

    Article  Google Scholar 

  22. Osikowicz W, de Jong MP, Salaneck WR (2007) Formation of the interfacial dipole at organic-organic interfaces: C60/polymer interfaces. Adv Mater 19(23):4213–4217

    Article  CAS  Google Scholar 

  23. Lindstrom CD, Zhu XY (2006) Photoinduced electron transfer at molecule-metal interfaces. Chem Rev 106(10):4281–4300

    Article  CAS  PubMed  Google Scholar 

  24. Abdulla HS (2012) Optical and electrical properties of thin films of polyaniline and polypyrrole. Int J Electrochem Sci 7:10666–10678

    CAS  Google Scholar 

  25. Fauzi F, Manaf NAA, Echendu OK, Dharmadasa IM (2013) Electrochemical deposition of organic and inorganic pin-hole plugging layers for CdS/CdTe solar cells. Proceeding of the 2nd International Conference on Solar energy materials (Malaysia) 47–54

  26. Huang WS (1993) Optical properties of polyaniline. Polymer 34(9):1833–1845

    Article  CAS  Google Scholar 

  27. Saha SK, Guchhait A, Pal AJ (2012) Cu2ZnSnS4 (CZTS) nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells. Phys Chem Chem Phys 14(22):8090–8096

    Article  CAS  PubMed  Google Scholar 

  28. Kus M, Ozel F, Buyukcelebi S, Aljabour A, Erdogan A, Ersoz M, Sariciftci NS (2015) Colloidal CuZnSnSe4-xSx nanocrystals for hybrid solar cells. Opt Mater 39:103–109

    Article  CAS  Google Scholar 

  29. Data P, Bialoglowski M, Lyzwa K, Bacewicz R, Dluzewski P, Lapkowski M, Gregorkiewicz T, Podsiadlo S, Monkman AP (2016) Kesterite inorganic-organic heterojunction for solution processable solar cells. Electrochim Acta 201:78–85

    Article  CAS  Google Scholar 

  30. Manivel P, Ramakrishnan S, Kothurkar NK, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C (2013) Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Mater Res Bull 48(2):640–645

    Article  CAS  Google Scholar 

  31. Urazov K, Dergacheva M, Gremenok V, Stanchik A, Bashkirov S (2018) Photo characteristics of electrodeposited CZT(S,Se) thin films on different substrates. Mater Today: Proc 5(11):22791–22797

  32. Mori E, Rajeshwar R (1989) The kinetics of electrocrystallization of tellurium and cadmium telluride at the glassy carbon surface. J Electroanal Chem 258(2):415–429

    Article  CAS  Google Scholar 

  33. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

  34. Scharifker BR, Mostany J (1984) Three-dimensional nucleation with diffusion controlled growth. Part I Number density of active sites and nucleation rates per site. J Electroanal Chem 177:13–23

    Article  CAS  Google Scholar 

  35. Dimitrievska M, Gurieva G, Xie H, Carrete A, Cabot A, Saucedo E, Peґrez-Rodrıґguez A, Schorr S, Izquierdo-Roca V (2015) Supporting information for: Raman scattering analysis of the surface chemistry of kesterites: impact of post-deposition annealing and Cu/Zn reordering on solar cell performance. J Alloys Compd 628:464–470

    Article  CAS  Google Scholar 

  36. Gribkova OL, Nekrasov AA, Cabanova VA, Krivenko TV, Nekrasova NV, Yakovlev SA, Terukov EI, Tameev AR (2018) Water-processable nanocomposite based on polyaniline and 2D molybdenum disulfide for NIR-transparent ambipolar transport layers. Chem Pap 72(7):1741–1752

    Article  CAS  Google Scholar 

  37. Iakobson OD, Gribkova OL, Tameev AR, Nekrasov AA, Saranin DS, Carloc AD (2018) Graphene nanosheet/polyaniline composite for transparent hole transporting layer. J Ind Eng Chem 65:309–317

    Article  CAS  Google Scholar 

  38. Repins I, Vora N, Beall C, Wei S-H, Yan Y, Romero M, Teeter G, Du H, To B, Young M, Noufi R (2011) Kesterites and chalcopyrites: a comparison of close cousins. Proceedings of the Materials Research Society Spring Meeting NREL/CP-5200-51286

Download references

Acknowledgments

The authors are grateful to V.I. Yaskevich (D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry) for assistance with SEM analysis.

Funding

This work was supported by the Grant financial of MON RK (project  AP08051961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazhmukhan Urazov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 547 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urazov, K., Dergacheva, M., Tameev, A. et al. Electrodeposited polyaniline/Cu2ZnSnSe4 heterojunction. J Solid State Electrochem 25, 237–245 (2021). https://doi.org/10.1007/s10008-020-04801-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04801-0

Keywords

Navigation