Skip to main content

Advertisement

Log in

Modification of polystyrene maleic anhydride for efficient energy storage applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The development of new energy storage devices has been gaining momentum in the wake of the energy crisis faced worldwide. New materials have been tried and tested and efforts have been made to implement these materials to the commercial arena. Conducting polymers have been used and new polymeric structures have been designed in this respect. Here, we have modified styrene maleic anhydride (SMA) copolymer with two different moieties, i.e. 2-amino-5-mercapto-1,3,4-thiadiazole (AMT) and 4,4-diaminodiphenylmethane (DDM) with an aim to study their electrochemical characteristics in details. The modifications were expected to greatly improve the electrochemical performance of an otherwise feebly conducting polymer. Both the modified copolymers were characterised using UV-visible and FTIR spectroscopic techniques and scanning electron microscopy. Their electrochemical properties were studied using cyclic voltammetry, chronopotentiometry and AC impedance techniques. These materials exhibited a significant enhancement in their specific capacitance when compared with SMA. SMA represents a specific capacitance of 24.5 F g−1 whereas AMT-modified copolymer SMA-1 exhibited a specific capacitance of 149 F g−1 and DDM-modified copolymer SMA-2 exhibited a specific capacitance of 124.45 F g−1. Thus, the results clearly indicated a considerable increase in the values of capacitance of SMA after the modification was performed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wu G, Tan P, Wang D et al (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  2. Wei C, He W, Zhang X, Xu F, Liu Q, Sun C, Song X (2015) Effects of morphology on the electrochemical performances of Li3V2(PO4)3 cathode material for lithium ion batteries. RSC Adv 5(67):54225–54245

    Article  CAS  Google Scholar 

  3. Fong KD, Wang T, Smoukov SK (2017) Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels 1(9):1857–1874

    Article  CAS  Google Scholar 

  4. Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM (2016) Conducting polymers for pseudocapacitive energy storage. Chem Mater 28(17):5989–5998

    Article  CAS  Google Scholar 

  5. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950

    Article  CAS  PubMed  Google Scholar 

  6. Lee JSM, Briggs ME, Hu CC, Cooper AI (2018) Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46:277–289

    Article  CAS  Google Scholar 

  7. Liu J, Wang J, Xu C, et al (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5

  8. Iro ZS, Subramani C, Dash SS (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11:10628–10643

    Article  CAS  Google Scholar 

  9. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4(3):453–489

    Article  CAS  Google Scholar 

  10. Bakker MG, Frazier RM, Burkett S, Bara JE, Chopra N, Spear S, Pan S, Xu C (2012) Perspectives on supercapacitors, pseudocapacitors and batteries. Nanomater Energy 1(3):136–158

    Article  CAS  Google Scholar 

  11. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  12. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46(1-3):169–185

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Tan Y, Liu Y, Niu L, Kong L, Kang L, Ran F (2018) New amphiphilic block copolymer-modified electrodes for supercapacitors. New J Chem 42(2):1290–1299

    Article  CAS  Google Scholar 

  14. Hao T, Wang W, Yu D (2018) A flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI. J Electron Mater 47(7):4108–4115

    Article  CAS  Google Scholar 

  15. Lang AW, Ponder JF, Österholm AM, Kennard NJ, Bulloch RH, Reynolds JR (2017) Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes. J Mater Chem A 5(45):23887–23897

    Article  CAS  Google Scholar 

  16. Yong S, Owen JR, Tudor MJ, Beeby SP (2013) Fabric based supercapacitor. J Phys Conf Ser:476

  17. Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers (Basel) 9(12)

  18. Meng J, Ma H, Shen Y, Chen P, Li X, Li J, Wang Y (1998) Synthesis and characterization of thermally crosslinked polyimide with second-order nonlinear optical chromophore. Sci China, Ser B Chem 41(4):395–402

    Article  CAS  Google Scholar 

  19. Heilig ML (1994) United States Patent Office. ACM SIGGRAPH Comput Graph 28(2):131–134

    Article  Google Scholar 

  20. Romano U (1993) United States Patent (19)

  21. Ahn T, Kim JW, Choi Y, Yi MH (2008) Hybridization of a low-temperature processable polyimide gate insulator for high performance pentacene thin-film transistors. Org Electron 9(5):711–720

    Article  CAS  Google Scholar 

  22. Stanasel O, Bota S (2018) 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Des Devel Ther 12:1545–1566

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dalton LR, Thomson J, Nalwa HS (1987) The role of extensively delocalized π-electrons in electrical conductivity, non-linear optical properties and physical properties of polymers. Polymer (Guildf) 28(4):543–552

    Article  CAS  Google Scholar 

  24. Chakraborty S, M AR, Mary NL (2020) Biocompatible supercapacitor electrodes using green synthesised ZnO/polymer nanocomposites for efficient energy storage applications. J Energy Storage 28

  25. Simon R, Chakraborty S, Konikkara N, Mary NL (2020) Functionalized polystyrene maleic anhydride copolymer/ZnO nanocomposites for enhanced electrochemical performance. J Appl Polym Sci 48945:1–12

    Google Scholar 

  26. Park YS, Kale TS, Nam CY, Choi D, Grubbs RB (2014) Effects of heteroatom substitution in conjugated heterocyclic compounds on photovoltaic performance: from sulfur to tellurium. Chem Commun 50(59):7964–7967

    Article  CAS  Google Scholar 

  27. Chen H, Wang L, Wang WY, Qiu YQ, Xie HM (2016) The effect of heterocyclic π bridges on second order nonlinear optical properties of compounds formed between ferrocenyl and corannulenyl. RSC Adv 6(99):97063–97069

    Article  CAS  Google Scholar 

  28. An Z, Wu M, Kang J, Ni J, Qi Z, Yuan B, Yan R (2018) Synthesis of fused B-containing heterocyclic compounds and their relevant optical properties. European J Org Chem 2018(34):4812–4817

    Article  CAS  Google Scholar 

  29. Schmidt V, Sturgis JN (2018) Modifying styrene-maleic acid co-polymer for studying lipid nanodiscs. Biochim Biophys Acta - Biomembr 1860(3):777–783

    Article  CAS  PubMed  Google Scholar 

  30. Alam M, Alandis NM, Ansari AA, Shaik MR (2013) Optical and electrical studies of polyaniline/ZnO nanocomposite. J Nanomater 2013:1–5

    Google Scholar 

  31. Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci Mater Electron 26:5303–5309

    Article  CAS  Google Scholar 

  32. Hassanien AS, Aly KA, Akl AA (2016) Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J Alloys Compd 685:733–742

    Article  CAS  Google Scholar 

  33. Maradiya HR, Patel VS (2002) Thiadiazole-based monomeric and polymeric dyes for cellulose triacetate fiber. Int J Polym Anal Charact 7(4):314–330

    Article  CAS  Google Scholar 

  34. Punyamoonwongsa P, Tangsongcharoen W, Phoungtawee P, Tighe B (2018) pH-responsive styrene maleic anhydride with improved surface activity. KMUTNB Int J Appl Sci Technol 11:45–51

    Google Scholar 

  35. Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Appl Mater Interfaces 5(11):4712–4724

    Article  CAS  PubMed  Google Scholar 

  36. Deflores LP, Ganim Z, Nicodemus RA, Tokmakoff A (2009) Amide I′-II′ 2D IR spectroscopy provides enhanced protein secondary structural sensitivity. J Am Chem Soc 131(9):3385–3391

    Article  CAS  PubMed  Google Scholar 

  37. He H, Liu WB, Dai LX, You SL (2009) Ir-catalyzed cross-coupling of styrene derivatives with allylic carbonates: free amine assisted vinyl C-H bond activation. J Am Chem Soc 131(24):8346–8347

    Article  CAS  PubMed  Google Scholar 

  38. Ayala S, Bentz KC, Cohen SM (2019) Block co-polyMOFs: morphology control of polymer-MOF hybrid materials. Chem Sci 10(6):1746–1753

    Article  CAS  PubMed  Google Scholar 

  39. Revin SB, John SA (2011) Electropolymerization of 3-amino-5-mercapto-1,2,4-triazole on glassy carbon electrode and its electrocatalytic activity towards uric acid. Electrochim Acta 56(24):8934–8940

    Article  CAS  Google Scholar 

  40. Ashourirad B, Demir M, Smith RA, Gupta RB, el-Kaderi HM (2018) Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Adv 8(22):12300–12309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mishra N, Shinde S, Vishwakarma R et al (2013) MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors. AIP Conf Proc 1538:228–236

    Article  CAS  Google Scholar 

  42. Chakraborty S, Mary NL (2020) A carbon nanotube reinforced functionalized styrene-maleic anhydride copolymer as an advanced electrode material for efficient energy storage applications. New J Chem 44(11):4406–4416

    Article  CAS  Google Scholar 

  43. Nuramdhani I, Jose M, Samyn P, Adriaensens P, Malengier B, Deferme W, de Mey G, van Langenhove L (2019) Charge-discharge characteristics of textile energy storage devices having different PEDOT:PSS ratios and conductive yarns configuration. Polymers (Basel) 11(2):345–362

    Article  CAS  Google Scholar 

  44. Ramakrishnan K, Nithya C, Karvembu R (2019) Heterostructure of two different 2D materials based on MoS2 nanoflowers@rGO: an electrode material for sodium-ion capacitors. Nanoscale Adv 1(1):334–341

    Article  CAS  Google Scholar 

  45. Huang X, Wang Q, Chen XY, Zhang ZJ (2016) The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors. Phys Chem Chem Phys 18(15):10438–10452

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Bu Y, Jin H, Wang J, Zhang W, Wang S, Wang J (2013) The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy and Fuels 27(10):6304–6310

    Article  CAS  Google Scholar 

  47. Saranya M, Ramachandran R, Wang F (2016) Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J Sci Adv Mater Devices 1(4):454–460

    Article  Google Scholar 

  48. Merrill MD, Montalvo E, Campbell PG, Wang YM, Stadermann M, Baumann TF, Biener J, Worsley MA (2014) Optimizing supercapacitor electrode density: achieving the energy of organic electrolytes with the power of aqueous electrolytes. RSC Adv 4(81):42942–42946

    Article  CAS  Google Scholar 

  49. Du H, Wu Z, Xu Y et al (2020) Poly(3,4-ethylenedioxythiophene) based solid-state polymer supercapacitor with ionic liquid gel polymer electrolyte. Polymers (Basel) 12(2):297–312

    Article  CAS  Google Scholar 

  50. Gul H, Shah A ul HA, Bilal S (2019) Achieving ultrahigh cycling stability and extended potential window for supercapacitors through asymmetric combination of conductive polymer nanocomposite and activated carbon. Polymers (Basel) 11:1678–1694, 10.

  51. Supercapacitors S (2020) Systematic design of polypyrrole / carbon fiber electrodes for efficient flexible fiber-type. Nanomater Artic 10:248–264

    Article  CAS  Google Scholar 

  52. Zhang Y, Zhang X, Yang K, Fan X, Tong Y, Zhang Z, Lu X, Mai K, Ni Q, Zhang M, Chen X (2018) Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. J Mater Chem A 6(26):12250–12258

    Article  CAS  Google Scholar 

  53. Chen X, Tung W-Y, Yang K, Chen YM, Liu K, Cheng CF, Zhu Y (2019) Electropolymerized porous conjugated polymer film as an electrode for a stable, high energy density thin film asymmetric supercapacitor. ACS Appl Polym Mater 1(7):1634–1640

    Article  CAS  Google Scholar 

  54. Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652

    Article  CAS  PubMed  Google Scholar 

  55. Abeykoon NC, Bonso JS, Ferraris JP (2015) Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Adv 5(26):19865–19873

    Article  CAS  Google Scholar 

  56. Su DY, Liu ZG, Jiang L et al (2019) Conducting polymers in supercapacitor application. IOP Conf Ser Earth Environ Sci 267:1–6

    Google Scholar 

  57. Singh A, Chandra A (2013) Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43(8):773–782

    Article  CAS  Google Scholar 

  58. Vijeth H, Ashokkumar SP, Yesappa L et al (2018) Flexible and high energy density solid-state asymmetric supercapacitor based on polythiophene nanocomposites and charcoal. RSC Adv 8:31414–31426

    Article  Google Scholar 

  59. Omar FS, Numan A, Duraisamy N, Bashir S, Ramesh K, Ramesh S (2017) A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J Alloys Compd 716:96–105

    Article  CAS  Google Scholar 

  60. Jeevagan AJ, Raj MA, John SA (2013) Growth of gold nanorods in solution and on ITO and Au substrates using non-peripheral amine functionalized nickel(ii) phthalocyanine capped gold nanoparticles as a seed solution. RSC Adv 3(3):870–878

    Article  CAS  Google Scholar 

  61. Li YS, Chen BF, Li XJ et al (2014) Cytotoxicity of polyaniline nanomaterial on rat celiac macrophages in vitro. PLoS One 9:1–6

    Google Scholar 

  62. Ferraz N, Straømme M, Fellström B et al (2012) In vitro and in vivo toxicity of rinsed and aged nanocellulose-polypyrrole composites. J Biomed Mater Res - Part A 100(A):2128–2138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the DST-FIST programme-2015 LEVEL 0 for providing us with the instrumentation facilities to carry out this research work. We are grateful to the Centre for Research in Science and Technology (CRIST), Stella Maris College, Chennai, for helping us with the characterisation of the samples. We would also like to thank Central Electrochemical Research Institute (CECRI) for helping us in our research endeavours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Mary.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Simon, R. & Mary, N.L. Modification of polystyrene maleic anhydride for efficient energy storage applications. J Solid State Electrochem 25, 327–337 (2021). https://doi.org/10.1007/s10008-020-04797-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04797-7

Keywords

Navigation