Skip to main content
Log in

Improved magnetosensor for the detection of hydrogen peroxide and glucose

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the use of neodymium electrodes as a basis for the immobilization of magnetite nanoparticles has been carried out. The sensitivity and detection limit to H2O2 are 2.4 × 104 μA M−1 and 1.8 × 10−5 M, respectively. The amount of peroxide in a contact lens liquid was also determined; there was a discrepancy between the manufacturer reported and the experimental measured values less than 2% of error. For the use of a biosensor in glucose detection, the sensitivity and detection limit are 938 μA M−1 and 9 mM, respectively. In both cases, the most notable is the increase in reuse of the electrode of up to 10 times without loss of sensitivity and its excellent performance after 1-month aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Tarvin M, McCord B, Mount K, Sherlach K, Miller ML (2010) Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode. J Chromatogr A 1217(48):7564–7572

    Article  CAS  PubMed  Google Scholar 

  2. Klassen NV, Marchington D, McGowan HCE (1994) H2O2 Determination by the I3-method and by KMnO4 titration. Anal Chem 66(18):2921–2925

    Article  CAS  Google Scholar 

  3. Almuaibed AM, Townshend A (1994) Flow spectrophotometric method for determination of hydrogen peroxide using a cation exchanger for preconcentration. Anal Chim Acta 295(1-2):159–163

    Article  CAS  Google Scholar 

  4. Chen W, Cai S, Ren Q-Q, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1):49–58

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180(1-2):15–32

    Article  CAS  Google Scholar 

  6. Randjelović MS, Momčilović MZ, Enke D, Mirčeski V (2019) Electrochemistry of hydrogen peroxide reduction reaction on carbon paste electrodes modified by Ag- and Pt-supported carbon microspheres. J Solid State Electrochem 23(4):1257–1267

    Article  CAS  Google Scholar 

  7. Afraz A, Rafati AA, Hajian A (2013) Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode. J Solid State Electrochem 17(7):2017–2025

    Article  CAS  Google Scholar 

  8. Šljukić B, Banks CE, Compton RG (2006) Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett 6(7):1556–1558

    Article  PubMed  CAS  Google Scholar 

  9. Ping J, Wu J, Fan K, Ying Y (2011) An amperometric sensor based on Prussian blue and poly(o-phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages. Food Chem 126(4):2005–2009

    Article  CAS  PubMed  Google Scholar 

  10. Woo S, Kim Y-R, Chung TD, Piao Y, Kim H (2012) Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim Acta 59:509–514

    Article  CAS  Google Scholar 

  11. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  12. Palanisamy S, Chen S-M, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sensors Actuators B Chem 166–167:372–377

    Article  CAS  Google Scholar 

  13. Wang Y, Li T, Zhang W, Huang Y (2014) A hydrogen peroxide biosensor with high stability based on gelatin-multiwalled carbon nanotubes modified glassy carbon electrode. J Solid State Electrochem 18(7):1981–1987

    Article  CAS  Google Scholar 

  14. Hao W-L, Li H-X, Shen C-Y, Liu S-L (2014) Nickel oxide hydroxide/platinum double layers modified n-silicon electrode for hydrogen peroxide determination. J Solid State Electrochem 18(4):1041–1047

    Article  CAS  Google Scholar 

  15. da Silva JV, Pimentel DM, Souto DEP, de Cássia Silva Luz R, Damos FS (2013) Application of horseradish peroxidase/polyaniline/bis(2-aminoethyl) polyethylene glycol-functionalized carbon nanotube composite as a platform for hydrogen peroxide detection with high sensitivity at low potential. J Solid State Electrochem 17(11):2795–2804

    Article  CAS  Google Scholar 

  16. Guivar JAR, Fernandes EGR, Zucolotto V (2015) A peroxidase biomimetic system based on Fe3O4 nanoparticles in non-enzymatic sensors. Talanta 141:307–314

    Article  CAS  PubMed  Google Scholar 

  17. Baghayeri M, Zare EN, Lakouraj MM (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265

    Article  CAS  PubMed  Google Scholar 

  18. Jaime-González J, Mazario E, Menendez N, Sanchez-Marcos J, Muñoz-Bonilla A, Herrasti P (2016) Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide. J Solid State Electrochem 20(4):1191–1198

    Article  CAS  Google Scholar 

  19. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53(8):3436–3441

    Article  CAS  Google Scholar 

  20. Comba FN, Rubianes MD, Cabrera L et al (2010) Highly sensitive and selective glucose biosensing at carbon paste electrodes modified with electrogenerated magnetite nanoparticles and glucose oxidase. Electroanalysis 22:1566–1572

    CAS  Google Scholar 

  21. Zhang Z, Zhu H, Wang X, Yang X (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174(1-2):183–189

    Article  CAS  Google Scholar 

  22. Zhang L, Zhai Y, Gao N, Wen D, Dong S (2008) Sensing H2O2 with layer-by-layer assembled Fe3O4–PDDA nanocomposite film. Electrochem Commun 10(10):1524–1526

    Article  CAS  Google Scholar 

  23. Lin C-Y, Chang C-T (2015) Iron oxide nanorods array in electrochemical detection of H2O2. Sensors Actuators B Chem 220:695–704

    Article  CAS  Google Scholar 

  24. Bindu K, Nagaraja H ~ S. (2019) Influence of cations in MFe2O4 (M: Fe, Zn, Ni, Sn) ferrite nanoparticles on the electrocatalytic activity for application in hydrogen peroxide sensor. Mater Res Express 6(9):95015

    Article  CAS  Google Scholar 

  25. Venosta L, Bracamonte MV, Rodríguez MC, Jacobo SE, Bercoff PG (2017) Comparative studies of hybrid functional materials based on different carbon structures decorated with nano-magnetite. Suitable application as platforms for enzyme-free electrochemical sensing of hydrogen peroxide. Sensors Actuators B Chem 248:460–469

    Article  CAS  Google Scholar 

  26. Gabunada JC, Vinothkannan M, Kim DH, Kim AR, Yoo DJ (2019) Magnetite nanorods stabilized by polyaniline/reduced graphene oxide as a sensing platform for selective and sensitive non-enzymatic hydrogen peroxide detection. Electroanalysis 31(8):1507–1516

    Article  CAS  Google Scholar 

  27. Samphao A, Butmee P, Jitcharoen J, Švorc Ľ, Raber G, Kalcher K (2015) Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe3O4 nanoparticles. Talanta 142:35–42

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Spanish Ministry of Economy and Competitiveness funded this research under project PGC2018-095642-B-I00.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.H. and E.M.; methodology: P.H., E.M., and J.R.; validation: E.M. and J.R.; formal analysis: P.H. and J.R.; investigation: P.H.; resources: P.H. and J.R.; data curation: E.M.; writing—original draft preparation: P.H., E.M., and J.R.; writing—review and editing: P.H., J.R., and E.M.; supervision: P.H. and J.R.; project administration: P.H.; funding acquisition: P.H.

Corresponding author

Correspondence to P. Herrasti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrasti, P., Mazarío, E. & Recio, F.J. Improved magnetosensor for the detection of hydrogen peroxide and glucose. J Solid State Electrochem 25, 231–236 (2021). https://doi.org/10.1007/s10008-020-04649-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04649-4

Keywords

Navigation