Skip to main content
Log in

Electrocatalytic (bio)platforms for the determination of tetracyclines

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to their widespread use in veterinary medicine, the presence of tetracyclines (TCs) and their metabolites in foodstuffs from treated animal represents a growing concern for human health and nutrition and, therefore, many countries have established maximum levels for their presence in foods. The compliance with these legislations requires sensitive and selective methods for the determination of this antibiotics’ family in different matrices. In this sense, electrochemical sensors and biosensors are competitive methodologies versus other approaches commonly used for this purpose such as chromatography and ELISA methods, mainly in terms of low-cost equipment, minimal sample treatment, reduced turnaround time, and compatibility with multiplexed and point-of-care determinations. With this background in mind, this article reviews in a general but comprehensive way recent contributions of electrochemical (bio)sensors developed for the determination of TCs and applied to TC analysis in environmental samples, food, and biological matrices. The highlighted representative methods show the key role played both by the materials (mostly nanomaterials and polymers) employed to impart surface electrocatalytic properties and significant signal amplification, and by different (bio)receptors to provide electrochemical sensing with the sensitivity and selectivity demanded by the determination of TCs in environmental, clinical, and food samples. Main challenges to overcome and future prospects to turn over all the benefits of these simple, rapid, sensitive, selective, and cost effective electroanalytical (bio)tools in single or multiplexed TCs analysis, even at decentralized settings and after minimal sample treatment, are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Calixto CMF, Gomes Cavalheiro ET (2017) Determination of tetracyclines in bovine and breast milk using a graphite-polyurethane composite electrode. Anal Lett 50(14):2323–2334

    Article  CAS  Google Scholar 

  2. Kesavan S, Kumar DR, Lee YR, Shim JJ (2017) Determination of tetracycline in the presence of major interference in human urine samples using polymelamine /electrochemically reduced graphene oxide modified electrode. Sensors Actuators B Chem 241:455–465

    Article  CAS  Google Scholar 

  3. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Xia P, Gao M, Ma K, Deng Z, Wei J, Zhang J, Wang L, Zheng G, Yang Y, Chen J, Wang Y (2017) Long-term effects of combined divalent copper and tetracycline on the performance, microbial activity and community in a sequencing batch reactor. Bioresour Technol 249:916–923

    Article  PubMed  CAS  Google Scholar 

  5. Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    Article  CAS  PubMed  Google Scholar 

  6. Xu J, Shen XK, Jia L, Zhou T, Ma TL, Xu ZQ, Cao JL, Ge ZJ, Bi N, Zhu TF, Guo SL, Li XH (2018) A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide- functionalized palygorskite nanomaterial. J Hazard Mater 342:158–165

    Article  CAS  PubMed  Google Scholar 

  7. Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2007) Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem 389(3):951–958

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Gao M, Zhang G, Wang X, Li J, Wang S (2015) Electrochemically reduced graphene oxide with enhanced electrocatalytic activity toward tetracycline detection. Chin J Catal 36(11):1936–1942

    Article  CAS  Google Scholar 

  9. Calixto CMF, Gomes Cavalheiro ET (2015) Determination of tetracyclines in bovine and human urine a graphite-polyurethane composite electrode. Anal Lett 48(9):1454–1464

    Article  CAS  Google Scholar 

  10. Ma X, Pang C, Li S, Xiong Y, Li J, Luo J, Yang Y (2019) Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid-liquid interface for electrochemical sensing of tetracycline. Biosens Bioelectron 146:111734

    Article  CAS  PubMed  Google Scholar 

  11. Hu X, Xu Y, Cui X, Li W, Huang X, Li Z, Shi J, Zou X (2020) Fluorometric and electrochemical dual-mode nanoprobe for tetracycline by using a nanocomposite prepared from carbon nitride quantum dots and silver nanoparticles. Microchim Acta 187(1):83

    Article  CAS  Google Scholar 

  12. Cherkashina K, Vakh K, Lebedinets S, Pochivalov A, Moskvin L, Lezov A, Bulatov A (2018) An automated salting-out assisted liquid-liquid microextraction approach using 1-octylamine: on-line separation of tetracycline in urine samples followed by HPLC-UV determination. Talanta 184:122–127

    Article  CAS  PubMed  Google Scholar 

  13. Marinou E, Samanidou VF, Papadoyannis IN (2019) Development of a high pressure liquid chromatography with diode array detection method for the determination of four tetracycline residues in milk by using QuEChERS dispersive extraction. Separations 6(2):21

    Article  CAS  Google Scholar 

  14. Moudgil P, Bedi JS, Aulakh RS, Gill JPS, Kumar A (2019) Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk. Food Anal Methods 12(2):338–346

    Article  Google Scholar 

  15. Grande-Martínez A, Moreno-González D, Arrebola-Liébanas FJ, Garrido-Frenich A, García-Campana A (2018) Optimization of a modified QuEChERS method for the determination of tetracyclines in fish muscle by UHPLC–MS/MS. J Pharm Biomed Anal 155:27–32

    Article  PubMed  CAS  Google Scholar 

  16. Guidi LR, Santos FA, Ribeiro ACSR, Fernandes C, Silva LHM, Gloria MBA (2018) Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method. Food Chem 245:1232–1238

    Article  CAS  PubMed  Google Scholar 

  17. Chatten LG, Fleischmann M, Pletch D (1979) The anodic oxidation of some tetracyclines. J Electroanal Chem 102(3):407–413

    Article  CAS  Google Scholar 

  18. Masawat P, Slater JM (2007) The determination of tetracycline residues in food using a disposable screen-printed gold electrode (SPGE). Sensors Actuators B Chem 124(1):127–132

    Article  CAS  Google Scholar 

  19. Magesa F, Wu Y, Dong S, Tian Y, Li G, Vianney JM, Buza J, Liu J, He Q (2020) Electrochemical sensing fabricated with Ta2O5 nanoparticle-electrochemically reduced graphene oxide nanocomposite for the detection of oxytetracycline. Biomolecules 10(1):110

    Article  CAS  PubMed Central  Google Scholar 

  20. Sultana A, Sazawa K, Islam MS, Sugawara K, Kuramitz H (2019) Determination of tetracycline by microdroplet hydrodynamic adsorptive voltammetry using a multiwalled carbon nanotube paste rotating disk electrode. Anal Lett 52(7):1153–1164

    Article  CAS  Google Scholar 

  21. Lorenzetti AS, Sierra T, Domini CE, Lista AG, Crevillen AG, Escarpa A (2020) Electrochemically reduced graphene oxide-based screen-printed electrodes for total tetracycline determination by adsorptive transfer stripping differential pulse voltammetry. Sensors 20:76

    Article  CAS  Google Scholar 

  22. Faria LV, Lima AP, Araujo FM, Lisboa TP, Matos MAC, Munoz RAA, Matos RC (2019) High-throughput amperometric determination of tetracycline residues in milk and quality control of pharmaceutical formulations: flow-injection versus batch-injection analysis. Anal Methods 11(41):5328–5336

    Article  CAS  Google Scholar 

  23. Guo H, Su Y, Shen Y, Long Y, Li W (2019) In situ decoration of Au nanoparticles on carbon nitride using a single source precursor and its application for the detection of tetracycline. J Colloid Interface Sci 536:646–654

    Article  CAS  PubMed  Google Scholar 

  24. Delgado KP, Raymundo-Pereira PA, Campos AM, Oliveira ONJr, Janegitz BC (2018) Ultralow cost electrochemical sensor made of potato starch and carbon black nanoballs to detect tetracycline in waters and milk. Electroanalysis 30(9):2153–2159

  25. Devkota L, Nguyen LT, Vu TT, Piro B (2018) Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochim Acta 270:535–542

    Article  CAS  Google Scholar 

  26. Sun XM, Ji Z, Xiong MX, Chen W (2017) The electrochemical sensor for the determination of tetracycline based on graphene /L-cysteine composite film. J Electrochem Soc 164(4):B107–B112

    Article  CAS  Google Scholar 

  27. Dumitru R, Manea F, Lupa L, Pacurariu C, Ianculescu A, Baciu A, Negrea S (2017) Synthesis, characterization of nanosized CoAl2O4 and its electrocatalytic activity for enhanced sensing application. J Therm Anal Calorim 128(3):1305–1312

    Article  CAS  Google Scholar 

  28. Krepper G, Pierini GD, Pistonesi MF, Di Nezio MS (2017) “In-situ” antimony film electrode for the determination oftetracyclines in Argentinean honey samples. Sensors Actuators 241:560–566

    Article  CAS  Google Scholar 

  29. Kushikawa RT, Silva MR, Angelo ACD, Teixeira MFS (2016) Construction of an electrochemical sensing platform based onplatinum nanoparticles supported on carbon for tetracycline determination. Sensors Actuators B Chem 228:207–213

    Article  CAS  Google Scholar 

  30. Bougrini M, Florea A, Cristea C, Sandulescu R, Vocanson F, Errachid A, Bouchikhi B, El Bari N, Jaffrezic-Renault N (2016) Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metalorganic framework for tetracycline detection in honey. Food Control 59:424–429

    Article  CAS  Google Scholar 

  31. Wong A, Scontri M, Materon EM, Lanza MRV, Sotomayor MDPT (2015) Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. J Electroanal Chem 757:250–257

    Article  CAS  Google Scholar 

  32. Gao Y, Wang W, Liu YZ, Tao Q, Wan X, Zhang JK (2015) Preparation of an electrochemical sensor for determination of chlortetracycline based on molecularly imprinted film. Chin J Anal Chem 43:212–217

    CAS  Google Scholar 

  33. Gan T, Lv Z, Liu N, Shi Z, Sun J, Liu Y (2015) Electrochemical detection method for chlorotetracycline based on enhancement of yolk–shell structured carbon sphere@MnO2. J Electrochem Soc 162(4):H200–H205

    Article  CAS  Google Scholar 

  34. Sun J, Gan T, Meng W, Shi Z, Zhang Z, Liu Y (2015) Determination of oxytetracycline in food using a disposable montmorillonite and acetylene black modified microelectrode. Anal Lett 48(1):100–115

    Article  CAS  Google Scholar 

  35. Gan T, Shi Z, Sun J, Liu Y (2014) Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta 121:187–193

    Article  CAS  PubMed  Google Scholar 

  36. Pérez-Rodríguez M, Pellerano RG, Pezza L, Pezza HR (2018) An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta 182:1–21

    Article  PubMed  CAS  Google Scholar 

  37. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384(3):601–619

    Article  CAS  PubMed  Google Scholar 

  38. Holade Y, Sahin NE, Servat K, Napporn TW, Kokoh KB (2015) Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells. Catalysts 5(1):310–348

    Article  CAS  Google Scholar 

  39. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45(8):2137–2211

    Article  CAS  PubMed  Google Scholar 

  40. Prusty AK, Bhand S (2020) A capacitive immunosensor for tetracycline estimation using antibody modified polytyramine-alkanethiol ultra-thin film on gold. J Electroanal Chem 863:114055

    Article  CAS  Google Scholar 

  41. Wang Y, Yao L, Ning G, Wu Y, Wu S, Mao S, Liu GQ (2019) An electrochemical strategy for tetracycline detection coupled triple helix aptamer probe with catalyzed hairpin assembly signal amplification. Biosens Bioelectron 143:111613

    Article  CAS  PubMed  Google Scholar 

  42. Rad AO, Azadbakht A (2019) An aptamer embedded in a molecularly imprinted polymer for impedimetric determination of tetracycline. Microchim Acta 186(2):56

    Article  CAS  Google Scholar 

  43. Huang Y, Yan X, Zhao L, Qi X, Wang S, Liang X (2019) An aptamer cocktail-based electrochemical aptasensor for direct capture and rapid detection of tetracycline in honey. Microchem J 150:104179

    Article  CAS  Google Scholar 

  44. Besharati M, Hamedi J, Hosseinkhani S, Saber R (2019) A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochem 128:66–73

    Article  CAS  Google Scholar 

  45. Alawad A, Istamboulié G, Calas-Blanchard C, Noguer T (2019) A reagentless aptasensor based on intrinsic aptamer redox activity for the detection of tetracycline in water. Sensors Actuators B Chem 288:141–146

    Article  CAS  Google Scholar 

  46. El Alami El Hassani N, Baraket A, Boudjaoui S, Taveira Tenório Neto E, Bausells J, El Bari N, Bouchikhi B, Elaissarid A, Errachid A, Zine N (2019) Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical BioMEMS. Biosens Bioelectron 130:330–337

    Article  CAS  Google Scholar 

  47. He B, Wang L, Dong X, Yan X, Li M, Yan S, Yan D (2019) Aptamer-based thin film gold electrode modified with gold nanoparticles and carboxylated multi-walled carbon nanotubes for detecting oxytetracycline in chicken samples. Food Chem 300:125179

    Article  CAS  PubMed  Google Scholar 

  48. Liu S, Wang Y, Xu W, Leng X, Wang H, Guo Y, Huang J (2017) A novel sandwich-type electrochemical aptasensor based on GR-3DAu and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens Bioelectron 88:181–187

    Article  CAS  PubMed  Google Scholar 

  49. Hou W, Shi Z, Guo Y, Sun X, Wang X (2017) An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline. Bioprocess Biosyst Eng 40:1419–1425

    Article  CAS  PubMed  Google Scholar 

  50. Zhan X, Hu G, Wagberg T, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183(2):723–729

    Article  CAS  Google Scholar 

  51. Ghodsi J, Rafati AA, Shoja Y (2016) First report on electrocatalytic oxidation of oxytetracycline by horse radish peroxidase: application in developing a biosensor to oxytetracycline determination. Sensors Actuators B Chem 224:692–699

    Article  CAS  Google Scholar 

  52. Benvidi A, Tezerjani MD, Moshtaghiun SM, Mazloum-Ardakani M (2016) An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim Acta 183(5):1797–1804

    Article  CAS  Google Scholar 

  53. Le TH, Pham VP, La TH, Phan TB, Le QH (2016) Electrochemical aptasensor for detecting tetracycline in milk. Adv Nat Sci Nanosci Nanotechnol 7:015008

    Article  CAS  Google Scholar 

  54. Guo YM, Wang XY, Sun X (2015) A label-free electrochemical aptasensor based on electrodeposited gold nanoparticles and methylene blue for tetracycline detection. Int J Electrochem Sci 10:3668–3679

    CAS  Google Scholar 

  55. Chen D, Yao D, Xie C, Liu D (2014) Development of an aptasensor for electrochemical detection of tetracycline. Food Control 42:109–115

    Article  CAS  Google Scholar 

  56. Conzuelo F, Ruiz-Valdepeñas Montiel V, Campuzano S, Gamella M, Torrente-Rodríguez RM, Reviejo AJ, Pingarrón JM (2014) Rapid screening of multiple antibiotic residues in milk using disposable amperometric magnetosensors. Anal Chim Acta 820:32–38

    Article  CAS  PubMed  Google Scholar 

  57. Jalalian H, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM (2018) Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Technol 73:45–57

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the CTQ2015-64402-C2-1-R (Spanish Ministerio de Economía y Competitividad) and RTI2018-096135-B-I00 (Ministerio de Ciencia, Innovación y Universidades) Research Projects and the TRANSNANOAVANSENS-CM Program from the Comunidad de Madrid (Grant S2018/NMT-4349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Pingarrón.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yáñez-Sedeño, P., Pedrero, M., Campuzano, S. et al. Electrocatalytic (bio)platforms for the determination of tetracyclines. J Solid State Electrochem 25, 3–13 (2021). https://doi.org/10.1007/s10008-020-04644-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04644-9

Navigation