Skip to main content
Log in

Designing hierarchical NiCo2S4 nanospheres with enhanced electrochemical performance for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hierarchical nanostructure materials have attracted significant attention due to their fascinating structural features for the application of high-performance supercapacitors. In this report, nanosheets interconnected hierarchical NiCo2S4 (NCS) nanospheres were synthesized by a facile hydrothermal method. The growth process was explored by performing different reaction temperature conditions (140, 150, 160, and 170 °C), and their electrochemical properties were studied. The electrochemical properties of NCS products (coated on conductive Ni foam substrate) at different reaction temperatures were measured in a traditional three-electrode electrochemical system. The optimized hierarchical NCS nanospheres (prepared at 150 °C) delivered better electrochemical results due to their synergetic morphological features and higher specific surface area. The NCS-150 nanospheres–based electrode exhibited its maximum specific capacity of 155 mA h g−1 at 2 A g−1 and further showed a good capacity retention value of 115 mA h g−1 at a higher current density of 5 A g−1. Besides, cycling analysis was proceeded up to 4000 cycles to test the practical ability of the designed electrode, and it retained 76% of capacity after performing the cycles. These results demonstrate that the nanosheets interconnected hierarchical NCS nanospheres (prepared at 150 °C) could be a promising electrode material for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hao X (2013) A review on the dielectric materials for high energy-storage application. J Adv Dielectr 03:1330001

    Google Scholar 

  2. Senokos E, Ou Y, Torres JJ, Sket F, González C, Marcilla R, Vilatela JJ (2018) Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves. Sci Rep 8:1–10

    CAS  Google Scholar 

  3. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139:72–79

    Google Scholar 

  4. Obreja VVN (2014) Supercapacitors specialities - materials review. AIP Conf Proc 1597:98–120

    CAS  Google Scholar 

  5. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46(22):6816–6854

    CAS  PubMed  Google Scholar 

  6. Li Q, Zheng S, Xu Y, Xue H, Pang H (2018) Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J 333:505–518

    CAS  Google Scholar 

  7. Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175:511–515

    CAS  Google Scholar 

  8. Wei C, Cheng C, Ma L, Liu M, Kong D, Du W, Pang H (2016) Mesoporous hybrid NiO: X-MnOx nanoprisms for flexible solid-state asymmetric supercapacitors. Dalt Trans 45:10789–10797

    CAS  Google Scholar 

  9. Li B, Zheng M, Xue H, Pang H (2016) High performance electrochemical capacitor materials focusing on nickel based materials. Inorg Chem Front 3:175–202

    CAS  Google Scholar 

  10. Zhao B, Zhuang H, Fang T, Jiao Z, Liu R, Ling X, Lu B, Jiang Y (2014) Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors. J Alloys Compd 597:291–298

    CAS  Google Scholar 

  11. Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J Mater Chem 21:18792–18798

    CAS  Google Scholar 

  12. Jiang Y, Chen D, Song J, Jiao Z, Ma Q, Zhang H, Cheng L, Zhao B, Chu Y (2013) A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochim Acta 91:173–178

    CAS  Google Scholar 

  13. Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K (2002) Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes. Solid State Ionics 152–153:833–841

    Google Scholar 

  14. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4(9):4484–4490

    CAS  PubMed  Google Scholar 

  15. Tang X, Jia R, Zhai T, Xia H (2015) Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7(49):27518–27525

    CAS  PubMed  Google Scholar 

  16. Zhuang L (2017) Low-crystalline iron oxide hydroxide nanoparticles: high-performance anode for supercapacitors. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 33:859–860

    CAS  Google Scholar 

  17. Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105

    CAS  Google Scholar 

  18. Xiao Y, Liu S, Li F, Zhang A, Zhao J, Fang S, Jia D (2012) 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22:4052–4059

    CAS  Google Scholar 

  19. Wang JG, Kang F, Wei B (2015) Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog Mater Sci 74:51–124

    CAS  Google Scholar 

  20. Yu M, Zhai T, Lu X, Chen X, Xie S, Li W, Liang C, Zhao W, Zhang L, Tong Y (2013) Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J Power Sources 239:64–71

    CAS  Google Scholar 

  21. Jiang Y, Ling X, Jiao Z, Li L, Ma Q, Wu M, Chu Y, Zhao B (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high performance electrochemical capacitors. Electrochim Acta 153:246–253

    CAS  Google Scholar 

  22. Zhao B, Lu M, Wang Z, Jiao Z, Hu P, Gao Q, Jiang Y, Cheng L (2016) Self-assembly of ultrathin MnO2/graphene with three-dimension hierarchical structure by ultrasonic-assisted co-precipitation method. J Alloys Compd 663:180–186

  23. Ray A, Roy A, Ghosh M, Alberto Ramos-Ramón J, Saha S, Pal U, Bhattacharya SK, Das S (2019) Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Appl Surf Sci 463:513–525

    CAS  Google Scholar 

  24. Hu H, Guan BY, Lou XW(David) (2016) Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1:102–113

    CAS  Google Scholar 

  25. Guan B, Li Y, Yin B, Liu K, Wang D, Zhang H, Cheng C (2017) Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J 308:1165–1173

    CAS  Google Scholar 

  26. Zhu T, Xia B, Zhou L, Lou XW(David) (2012) Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J Mater Chem 22:7851–7855

  27. Moosavifard SE, Fani S, Rahmanian M (2016) Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem Commun 52(24):4517–4520

    CAS  Google Scholar 

  28. Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590

    CAS  Google Scholar 

  29. Huang M, Wu J, He X, Xu R, Wang Y, Fan L, Lin J, Xu Z (2017) A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl Surf Sci 422:597–606

    Google Scholar 

  30. Gao G, Bin Wu H, Ding S, Liu LM, Lou XW(David) (2015) Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11(7):804–808

  31. Du W, Zhu Z, WangY LJ, Yang W, Qian X, Pang H (2014) One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. RSC Adv 4:6998

    CAS  Google Scholar 

  32. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5(19):8879–8883

    CAS  PubMed  Google Scholar 

  33. Parveen N, Cho MH (2016) Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications. Sci Rep 6:27318

  34. Li D, Gong Y, Pan C (2016) Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci Rep 6:29788

    PubMed  PubMed Central  Google Scholar 

  35. Nguyen VH, Shim JJ (2015) In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 166:302–309

    CAS  Google Scholar 

  36. Wang X, Zhao SX, Dong L, Lu QL, Zhu J, Nan CW (2017) One-step synthesis of surface-enriched nickel cobalt sulfide nanoparticles on graphene for high-performance supercapacitors. Energy Storage Mater 6:180–187

    Google Scholar 

  37. Liu Y, Jiang G, Sun S, Xu B, Zhou J, Zhang Y, Yao J (2017) Growth of NiCo2S4 nanotubes on carbon nanofibers for high performance flexible supercapacitors. J Electroanal Chem 804:212–219

    CAS  Google Scholar 

  38. Zheng Y, Xu J, Yang X, Zhang Y, Shang Y, Hu X (2018) Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121

    CAS  Google Scholar 

  39. Li G, Zheng J, Yang C, Zhou Q, Wang F, Wang Q (2017) One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors. Appl Surf Sci 425:180–187

  40. Yan M, Yao Y, Wen J, Long L, Kong M, Zhang G, Liao X, Yin G, Huang Z (2016) Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces 8(37):24525–24535

    CAS  PubMed  Google Scholar 

  41. Kim DY, Ghodake GS, Maile NC, Kadam AA, Sung Lee D, Fulari VJ, Shinde SK (2017) Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor. Sci Rep 7:1–10

    Google Scholar 

  42. Chai H, Dong H, Wang Y, Xu J, Jia D (2017) Porous NiCo2S4-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications. Appl Surf Sci 401:399–407

    CAS  Google Scholar 

  43. Chen H, Jiang J, Zhao Y, Zhang L, Guo D, Xia D (2014) One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Mater Chem A 3:428–437

    Google Scholar 

  44. Liu C, Wu X (2018) NiCo2S4 nanotube arrays grown on flexible carbon fibers as battery-type electrodes for asymmetric supercapacitors. Mater Res Bull 103:55–62

    CAS  Google Scholar 

  45. Li R, Wang S, Huang Z, Lu F, He T (2016) NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapcitors. J Power Sources 312:156–164

  46. Bhagwan J, Sahoo A, Yadav KL, Sharma Y (2015) Porous, one dimensional and high aspect ratio Mn3O4 nanofibers: fabrication and optimization for enhanced supercapacitive properties. Electrochim Acta 174:992–1001

    CAS  Google Scholar 

  47. Hussain SK, Yu JS (2017) HMTA-assisted uniform cobalt ions activated copper oxide microspheres with enhanced electrochemical performance for pseudocapacitors. Electrochim Acta 258:388–395

    CAS  Google Scholar 

  48. Liang J, Chen S, Xie M, Wang Y, Guo X, Guo X, Ding W (2014) Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J Mater Chem A 2:16884–16891

    CAS  Google Scholar 

  49. Hussain SK, Nagaraju G, Sekhar SC, Su J (2019) Morphological synergistic behavior on electrochemical performance of battery-type spinel nickel manganese oxides for aqueous hybrid supercapacitors. J Power Sources 439:227088

    Google Scholar 

  50. Chou SW, Lin JY (2013) Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc 160:D178–D182

    CAS  Google Scholar 

  51. Zhang L, Bin Wu H, Lou XW(David) (2012) Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chem Commun 48(55):6912–6914

  52. Zhang P, Guan BY, Yu L, Lou XW(David) (2017) Formation of double-shelled zinc–cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew Chemie Int Ed 56:7141–7145

  53. Ding D, Waller G, Liu M, Wang Z, Zhao B, Chen D, Xiong X, Rainwater B (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80

    Google Scholar 

  54. Jiang Z, Lu W, Li Z, Ho KH, Li X, Jiao X, Chen D (2014) Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. J Mater Chem A 2:8603–8606

    CAS  Google Scholar 

  55. Miao L, Yu J, Jiang J, Wan H, Zhang L, Ruan Y, Chen H, Xu K (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15:7649

    Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2017H1D8A2031138 and 2018R1A6A1A03025708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Su Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, B.N.V., Bhagwan, J., Hussain, S.K. et al. Designing hierarchical NiCo2S4 nanospheres with enhanced electrochemical performance for supercapacitors. J Solid State Electrochem 24, 1033–1044 (2020). https://doi.org/10.1007/s10008-020-04573-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04573-7

Keywords

Navigation