Skip to main content

Advertisement

Log in

Three-dimensional NiCo2S4 nanosheets as high-performance electrodes materials for supercapacitors

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the report, we explore a two-step efficient synthetic to purposefully fabricate three-dimensional (3D) NiCo2S4 nanosheets for advanced electrochemical supercapacitors. They were characterized for their structural, morphological and electrochemical properties by using XRD, SEM, TEM, cyclic voltammetry and charge discharge methods. The unique designed nanostructure exhibits a high specific capacitance (1257.1 F g−1 at current density 1 A g−1), good rate performance (75.7% retention for current increases around 20 times) and excellent cycling stability (80% retention at 5 A g−1 after 1000 cycles). We are the first step in the synthesis of 3D NiCo2S4 flowers, which have a specific capacitance of 700.7 F g−1 at the current density of 1 A g−1 and exhibit excellent cycling stability with 95% capacitance retention. The S-NiCo2S4//activated carbon asymmetric supercapacitor is can deliver a maximum energy density of 47.3 W h kg−1 at a power density of 477.3 W kg−1. Therefore, according to our investigation it can be concluded that the low cost and environmental friendly two-step approach from 3D NiCo2S4 nanoflowers to the 3D NiCo2S4 nanosheets could be used to deposit efficient 3D NiCo2S4 nanosheets for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sivanantham A, Ganesan P, Shanmugam S (2016) Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Funct Mater 26:4661–4672

    Article  Google Scholar 

  2. Li LQ, Dai ZY, Zhang YF, Yang J, Huang W, Dong XC (2015) Carbon@NiCo2S4 nanorods: an excellent electrode material for supercapacitors. RSC Adv 5:83408–83414

    Article  Google Scholar 

  3. Gao Z, Song NN, Zhang YY, Li XD (2015) Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett 15:8194–8203

    Article  Google Scholar 

  4. Zhang J, Gao H, Zhang MY, Yang Q, Chuo HX (2015) NiCo2S4/Ni(OH)2 core-shell heterostructured nanotube arrays on carbon-fabric as high-performance pseudocapacitor electrodes. Appl Surf Sci 349:870–875

    Article  Google Scholar 

  5. Niu LY, Wang YD, Ruan FP, Shen C, Shan S, Xu M, Sun ZK, Li C, Liu XJ, Gong YY (2016) In situ growth of NiCo2S4@Ni3V2O8 on Ni foam as a binder-free electrode for asymmetric supercapacitors. J Mater Chem A 4:5669–5677

    Article  Google Scholar 

  6. Wang R, Qi JQ, Sui YW, Chang Y, He YZ, Wei FX, Meng QK, Sun Z, Zhao YL (2016) Fabrication of nanosheets Co3O4 by oxidation-assisted dealloying method for high capacity supercapacitors. Mater Lett 184:181–184

    Article  Google Scholar 

  7. Bao LH, Li XD (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252

    Article  Google Scholar 

  8. Gao Z, Yang WL, Wang J, Song NN, Li XD (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  Google Scholar 

  9. Chen HY, Ai YN, Liu F, Chang X, Xue Y, Huang Q, Wang C, Lin HL, Han S (2016) Carbon-coated hierarchical Ni–Mn layered double hydroxide nanoarrays on Ni foam for flexible high-capacitance supercapacitors. Electrochim Acta 213:55–65

    Article  Google Scholar 

  10. Li DL, Gong YN, Pan CX (2016) Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci Rep 6:29788

    Article  Google Scholar 

  11. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336–5342

    Article  Google Scholar 

  12. Zhang YF, Li LQ, Su HQ, Huang W, Dong XC (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A 3:43–59

    Article  Google Scholar 

  13. Qin CL, Zhang YS, Wang ZF, Xiong HQ, Yu H, Zhao WM (2016) One-step synthesis of CuO@brass foil by dealloying method for low-cost flexible supercapacitor electrodes. J Mater Sci Mater Electron 27:9206–9215

    Article  Google Scholar 

  14. Li YH, Zhang YF, Li YJ, Wang ZY, Fu HY, Zhang XN, Chen YH, Zhang HZ, Li XD (2014) Unveiling the dynamic capacitive storage mechanism of Co3O4@NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochim Acta 145:177–184

    Article  Google Scholar 

  15. Li WY, Xu KB, An L, Jiang FR, Zhou XY, Yang JM, Chen ZG, Zou RJ, Hu JQ (2014) Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors. J Mater Chem A 2:1443–1447

    Article  Google Scholar 

  16. Liu S, Guo SJ, Sun SH, You XZ (2015) Dumbbell-like Au–Fe3O4 nanoparticles: a new nanostructure for supercapacitors. Nanoscale 7:4890–4893

    Article  Google Scholar 

  17. Nguyen VH, Lamiela C, Shim JJ (2016) 3D hierarchical mesoporous NiCo2S4@Ni(OH)2 core–shell nanosheet arrays for high performance supercapacitors. New J Chem 40:4810–4817

    Article  Google Scholar 

  18. Gao GX, Wu HB, Ding SJ, Liu LM, Lou XW (2015) Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11:804–808

    Article  Google Scholar 

  19. Krishnan SG, Rahim MHA, Jose RJ (2016) Synthesis and characterization of MnCo2O4 cuboidal microcrystals as a high performance psuedocapacitor electrode. J Alloy Compd 656:707–713

    Article  Google Scholar 

  20. Gao Z, Song NN, Li XD (2015) Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors. J Mater Chem A 3:14833–14844

    Article  Google Scholar 

  21. Zeng W, Zhang GH, Wu X, Zhang K, Zhang H, Hou SC, Li CC, Wang TH, Duan HG (2015) Construction of hierarchical CoS nanowire@NiCo2S4 nanosheet arrays via one-step ion exchange for high-performance supercapacitors. J Mater Chem A 3:24033–24040

    Article  Google Scholar 

  22. Zhang YF, Ma MZ, Yang J, Sun CC, Su HQ, Huang W, Dong XC (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830

    Article  Google Scholar 

  23. Shen JF, Xu XW, Dong P, Zhang ZQ, Baines R, Ji J, Pei Y, Ye MX (2016) Design and synthesis of three-dimensional needle-like CoNi2S4/CNT/graphene nanocomposite with improved electrochemical properties. Ceram Int 42:8120–8127

    Article  Google Scholar 

  24. Shen JF, Dong P, Baines R, Xu XW, Zhang ZQ, Ajayan PM, Ye MX (2016) Controlled synthesis and comparison of NiCo2S4/graphene/2D TMD ternary nanocomposites for high-performance supercapacitors. Chem Commun 52:9251–9254

    Article  Google Scholar 

  25. Peng SJ, Li LL, Li CC, Tan HT, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan QY (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49:10178–10180

    Article  Google Scholar 

  26. Chen ZH, Wan ZH, Yang TZ, Zhao MG, Lv XY, Wang H, Ren XL, Mei XF (2016) Preparation of nickel cobalt sulfide hollow nanocolloids with enhanced electrochemical property for supercapacitors application. Sci Rep 6:25151

    Article  Google Scholar 

  27. Cai DP, Wang DD, Wang CX, Liu B, Wang LL, Liu Y, Li QH, Wang TH (2015) Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance. Electrochim Acta 151:35–41

    Article  Google Scholar 

  28. Zhu YR, Wu ZB, Jing MJ, Yang XM, Song WX, Ji XB (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590

    Article  Google Scholar 

  29. Kong W, Lu CC, Zhang W, Pu J, Wang ZH (2015) Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A 3:12452–12460

    Article  Google Scholar 

  30. Yan ML, Yao YD, Wen JQ, Long L, Kong ML, Zhang GG, Liao XM, Yin GF, Huang ZB (2016) Construction of a hierarchical NiCo2S4@PPy core–shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces 8:24525–24535

    Article  Google Scholar 

  31. Li R, Wang SL, Huang ZC, Lu FX, He TB (2016) NiCo2S4@Co(OH)2 core–shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J Power Sources 312:156–164

    Article  Google Scholar 

  32. Chen S, Chen HC, Fan MQ, Li C, Shu KY (2016) Sea urchin-like Ni–Co sulfides with different Ni to Co ratios for superior electrochemical performance. J Sol-Gel Sci Technol 80:119–125

    Article  Google Scholar 

  33. Yu XY, Yu L, Lou XW (2016) Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 6:1501333

    Article  Google Scholar 

  34. Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8:9531–9541

    Article  Google Scholar 

  35. Li XM, Jiang LF, Zhou C, Liu JP, Zeng HB (2015) Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Mater 7:1–8

    Google Scholar 

  36. Zhu J, Xu Z, Lu BG (2014) Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy 7:114–123

    Article  Google Scholar 

  37. Xia C, Jiang Q, Zhao C, Beaujuge PM, Alshareef HN (2016) Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes. Nano Energy 24:78–86

    Article  Google Scholar 

  38. Mai LQ, Khan AM, Tian XC, Hercule KM, Zhao YL, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923

    Article  Google Scholar 

  39. Wang T, Le QJ, Zhang GD, Zhu SJ, Guan B, Zhang JM, Xing SX, Zhang YX (2016) Facile preparation and sulfidation analysis for activated multiporous carbon@NiCo2S4 nanostructure with enhanced supercapacitive properties. Electrochim Acta 211:627–635

    Article  Google Scholar 

  40. Shen LF, Wang J, Xu GY, Li HS, Dou H, Zhang XG (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5:1–7

    Google Scholar 

  41. Pu J, Wang TT, Wang HY, Tong Y, Lu CC, Kong W, Wang ZH (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. Chempluschem 79:577–583

    Article  Google Scholar 

  42. Xiao YL, Lei Y, Zheng BZ, Gu L, Wang YY, Xiao D (2015) Rapid microwave-assisted fabrication of 3D cauliflower-like NiCo2S4 architectures for asymmetric supercapacitors. RSC Adv 5:21604–21613

    Article  Google Scholar 

  43. Gao Z, Bumgardner C, Song NN, Zhang YY, Li JJ, Li XD (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the financial support provided by China Scholarship Fund, National Natural Science Foundation (51671214, 51601220) and Produce-Learn-Research projects of Jiangsu Province (By:2016026-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Y.W., Zhang, Y.M., Hou, P.H. et al. Three-dimensional NiCo2S4 nanosheets as high-performance electrodes materials for supercapacitors. J Mater Sci 52, 7100–7109 (2017). https://doi.org/10.1007/s10853-017-0942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0942-8

Keywords

Navigation