Skip to main content
Log in

Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, composite materials based on carbide-derived carbon (CDC) and carbon nanotubes (CNT) modified with Co phthalocyanine (CoPc) were employed as electrocatalysts towards the oxygen reduction reaction (ORR) in both alkaline and acid media. Two different CDCs derived from titanium carbide and silicon carbide were used and the CDC-to-CNT ratio was varied in the composite materials. The final catalysts were obtained after pyrolysis at 800 °C. The catalyst materials were characterised by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and microwave plasma atomic emission spectroscopy. The ORR measurements were performed using the rotating disk electrode (RDE) method. The RDE results revealed that the composite catalysts with higher CNT content possessed higher ORR electrocatalytic activity. The catalyst showing the highest activity in RDE tests was selected as a cathode material and tested in an anion exchange membrane fuel cell (AEMFC). An excellent AEMFC performance was obtained, with a peak power density of 473 mW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219

    Article  CAS  Google Scholar 

  2. Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12:463–491

    Article  CAS  Google Scholar 

  3. Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53(1):102–121

    Article  CAS  Google Scholar 

  4. Xia W, Mahmood A, Liang ZB, Zou RQ, Guo SJ (2016) Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed 55(8):2650–2676

    Article  CAS  Google Scholar 

  5. Zhang L, Zhang JJ, Wilkinson DP, Wang HJ (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182

    Article  CAS  Google Scholar 

  6. Bezerra CWB, Zhang L, Liu HS, Lee KC, Marques ALB, Marques EP, Wang HJ, Zhang JJ (2007) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 173:891–908

    Article  CAS  Google Scholar 

  7. Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  CAS  Google Scholar 

  8. Chen ZW, Higgins D, Yu AP, Zhang L, Zhang JJ (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192

    Article  CAS  Google Scholar 

  9. Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrogen Energy 37:357–372

    Article  CAS  Google Scholar 

  10. Wu G, Zelenay P (2013) Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res 46(8):1878–1889

    Article  CAS  PubMed  Google Scholar 

  11. Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42

    Article  CAS  Google Scholar 

  12. Wood KN, O’Hayre R, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ Sci 7:1212–1249

    Article  CAS  Google Scholar 

  13. Dombrovskis JK, Palmqvist AEC (2016) Recent progress in synthesis, characterization and evaluation of non-precious metal catalysts for the oxygen reduction reaction. Fuel Cells 16:4–22

    Article  CAS  Google Scholar 

  14. Higgins D, Zamani P, Yu AP, Chen ZW (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9:357–390

    Article  CAS  Google Scholar 

  15. Shao MH, Chang QW, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116(6):3594–3657

    Article  CAS  PubMed  Google Scholar 

  16. Barkholtz HM, Liu DJ (2017) Advancements in rationally designed PGM-free fuel cell catalysts derived from metal-organic frameworks. Mater Horizons 4:20–37

    Article  CAS  Google Scholar 

  17. Singh K, Razmjooei F, Yu JS (2017) Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review. J Mater Chem A 5:20095–20119

    Article  CAS  Google Scholar 

  18. Gewirth AA, Varnell JA, DiAscro AM (2018) Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem Rev 118(5):2313–2339

    Article  CAS  PubMed  Google Scholar 

  19. Liu DD, Tao L, Yan DF, Zou YQ, Wang SY (2018) Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem 5:1775–1785

    Article  CAS  Google Scholar 

  20. Wang Y, Li J, Wei ZD (2018) Recent progress of carbon-based materials in oxygen reduction reaction catalysis. ChemElectroChem 5:1764–1774

    Article  CAS  Google Scholar 

  21. Sarapuu A, Kibena-Põldsepp E, Borghei M, Tammeveski K (2018) Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal-nitrogen-carbon catalysts for alkaline membrane fuel cells. J Mater Chem A 6:776–804

    Article  CAS  Google Scholar 

  22. Wang W, Jia QY, Mukerjee S, Chen SL (2019) Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. ACS Catal 9:10126–10141

    Article  CAS  Google Scholar 

  23. Martinez U, Babu SK, Holby EF, Chung HT, Yin X, Zelenay P (2019) Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv Mater 31:1806545

    Article  CAS  Google Scholar 

  24. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–1213

    Article  CAS  Google Scholar 

  25. Zagal JH, Bedioui F (2016) Electrochemistry of N4 macrocyclic metal complexes. Springer, Cham

    Book  Google Scholar 

  26. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  27. Zagal J, Paez M, Tanaka AA, Dossantos JR, Linkous CA (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  28. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  29. Li ZP, Liu BH (2010) The use of macrocyclic compounds as electrocatalysts in fuel cells. J Appl Electrochem 40:475–483

    Article  CAS  Google Scholar 

  30. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49(8):3557–3566

    Article  CAS  PubMed  Google Scholar 

  31. Masa J, Ozoemena K, Schuhmann W, Zagal JH (2012) Oxygen reduction reaction using N-4-metallomacrocyclic catalysts: fundamentals on rational catalyst design. J Porphyrins Phthalocyanines 16:761–784

    Article  CAS  Google Scholar 

  32. Vignarooban K, Lin J, Arvay A, Kolli S, Kruusenberg I, Tammeveski K, Munukutla L, Kannan AM (2015) Nano-electrocatalyst materials for low temperature fuel cells: a review. Chin J Catal 36:458–472

    Article  CAS  Google Scholar 

  33. Liu YY, Yue XP, Li KX, Qiao JL, Wilkinson DP, Zhang JJ (2016) PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coord Chem Rev 315:153–177

    Article  CAS  Google Scholar 

  34. Zagal JH, Koper MTM (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chem Int Ed 55(47):14510–14521

    Article  CAS  Google Scholar 

  35. Zhang W, Lai WZ, Cao R (2017) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem Rev 117(4):3717–3797

    Article  CAS  PubMed  Google Scholar 

  36. Zagal JH, Kruusenberg I, Tammeveski K, Recio J, Muñoz K, Venegas R (2018) Oxygen reduction on carbon-supported metallophthalocyanines and metalloporphyrins. In: Wandelt K (ed) Encyclopedia of interfacial chemistry. Elsevier, Oxford pp, pp 812–819

    Chapter  Google Scholar 

  37. Tammeveski K, Zagal JH (2018) Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application. Curr Opin Electrochem 9:207–213

    Article  CAS  Google Scholar 

  38. Yamazaki S (2018) Metalloporphyrins and related metallomacrocycles as electrocatalysts for use in polymer electrolyte fuel cells and water electrolyzers. Coord Chem Rev 373:148–166

    Article  CAS  Google Scholar 

  39. Kumar A, Zhang Y, Liu W, Sun XM (2020) The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction. Coord Chem Rev 402:213047

    Article  CAS  Google Scholar 

  40. Venegas R, Recio FJ, Riquelme J, Neira K, Marco JF, Ponce I, Zagal JH, Tasca F (2017) Biomimetic reduction of O-2 in an acid medium on iron phthalocyanines axially coordinated to pyridine anchored on carbon nanotubes. J Mater Chem A 5:12054–12059

    Article  CAS  Google Scholar 

  41. Pizarro A, Abarca G, Gutierrez-Ceron C, Cortes-Arriagada D, Bernardi F, Berrios C, Silva JF, Rezende MC, Zagal JH, Onate R, Ponce I (2018) Building pyridinium molecular wires as axial ligands for tuning the electrocatalytic activity of iron phthalocyanines for the oxygen reduction reaction. ACS Catal 8:8406–8419

    Article  CAS  Google Scholar 

  42. Gutierrez-Ceron C, Onate R, Zagal JH, Pizarro A, Silva JF, Castro-Castillo C, Rezende MC, Flores M, Cortes-Arriagada D, Toro-Labbe A, Campos LM, Venkataraman L, Ponce I (2019) Molecular conductance versus inductive effects of axial ligands on the electrocatalytic activity of self-assembled iron phthalocyanines: the oxygen reduction reaction. Electrochim Acta 327:134996

    Article  CAS  Google Scholar 

  43. Riquelme J, Neira K, Marco JF, Hermosilla-Ibanez P, Orellana W, Zagal JH, Tasca F (2018) Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. Electrochim Acta 265:547–555

    Article  CAS  Google Scholar 

  44. Bagotzky VS, Tarasevich MR, Radyushkina KA, Levina OA, Andrusyova SI (1978) Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J Power Sources 2:233–240

    Article  Google Scholar 

  45. Dodelet J-P (2006) Oxygen reduction in PEM fuel cell conditions: heat-treated non-precious metal-N4 macrocycles and beyond. In: Zagal JH, Bedioui F, Dodelet J-P (eds) N4-macrocyclic metal complexes. Springer, New York pp, pp 83–147

    Chapter  Google Scholar 

  46. Elbaz L, Wu G, Zelenay P (2013) Heat-treated non-precious-metal-based catalysts for oxygen reduction. In: Shao M (ed) Electrocatalysis in fuel cells. Springer, London, pp 213–246

    Chapter  Google Scholar 

  47. Jaouen F (2015) Heat-treated transition metal-NxCy electrocatalysts for the O2 reduction reaction in acid PEM fuel cells. In: Chen ZW, Dodelet J-P, Zhang JJ (eds) Non-Noble metal fuel cell catalysts. Wiley-VCH, Weinheim, pp 29–117

    Google Scholar 

  48. Meng H, Larouche N, Lefevre M, Jaouen F, Stansfield B, Dodelet JP (2010) Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim Acta 55:6450–6461

    Article  CAS  Google Scholar 

  49. Bambagioni V, Bianchini C, Filippi J, Lavacchi A, Oberhauser W, Marchionni A, Moneti S, Vizza F, Psaro R, Dal Santo V, Gallo A, Recchia S, Sordelli L (2011) Single-site and nanosized Fe-Co electrocatalysts for oxygen reduction: synthesis, characterization and catalytic performance. J Power Sources 196:2519–2529

    Article  CAS  Google Scholar 

  50. Kruusenberg I, Matisen L, Tammeveski K (2013) Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media. J Nanosci Nanotechnol 13(1):621–627

    Article  CAS  PubMed  Google Scholar 

  51. Venegas R, Muñoz-Becerra K, Candia-Onfray C, Marco JF, Zagal JH, Recio FJ (2020) Experimental reactivity descriptors of M-N-C catalysts for the oxygen reduction reaction. Electrochim Acta 332:135340

    Article  CAS  Google Scholar 

  52. Zúñiga C, Candia-Onfray C, Venegas R, Muñoz K, Urra J, Sánchez-Arenillas M, Marco JF, Zagal JH, Recio FJ (2019) Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media. Electrochem Commun 102:78–82

    Article  CAS  Google Scholar 

  53. Alsudairi A, Li JK, Ramaswamy N, Mukerjee S, Abraham KM, Jia QY (2017) Resolving the iron phthalocyanine redox transitions for ORR catalysis in aqueous media. J Phys Chem Lett 8(13):2881–2886

    Article  CAS  PubMed  Google Scholar 

  54. Zhang C, Zhang W, Zheng WT (2019) Transition metal-nitrogen-carbon active site for oxygen reduction electrocatalysis: beyond the fascinations of TM-N-4. ChemCatChem 11:655–668

    Article  CAS  Google Scholar 

  55. Jia QY, Ramaswamy N, Tylus U, Strickland K, Li JK, Serov A, Artyushkova K, Atanassov P, Anibal J, Gumeci C, Barton SC, Sougrati MT, Jaouen F, Halevi B, Mukerjee S (2016) Spectroscopic insights into the nature of active sites in iron-nitrogen-carbon electrocatalysts for oxygen reduction in acid. Nano Energy 29:65–82

    Article  CAS  Google Scholar 

  56. Ramaswamy N, Tylus U, Jia QY, Mukerjee S (2013) Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 135(41):15443–15449

    Article  CAS  PubMed  Google Scholar 

  57. Zagal JH, Recio FJ, Gutierrez CA, Zuniga C, Paez MA, Caro CA (2014) Towards a unified way of comparing the electrocatalytic activity MN4 macrocyclic metal catalysts for O-2 reduction on the basis of the reversible potential of the reaction. Electrochem Commun 41:24–26

    Article  CAS  Google Scholar 

  58. Zagal JH, Griveau S, Ozoemena KI, Nyokong T, Bedioui F (2009) Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis. J Nanosci Nanotechnol 9(4):2201–2214

    Article  CAS  PubMed  Google Scholar 

  59. Choi HJ, Kumar NA, Baek JB (2015) Graphene supported non-precious metal-macrocycle catalysts for oxygen reduction reaction in fuel cells. Nanoscale 7(16):6991–6998

    Article  CAS  PubMed  Google Scholar 

  60. Kruusenberg I, Mondal J, Matisen L, Sammelselg V, Tammeveski K (2013) Oxygen reduction on graphene-supported MN4 macrocycles in alkaline media. Electrochem Commun 33:18–22

    Article  CAS  Google Scholar 

  61. Türk KK, Kruusenberg I, Mondal J, Rauwel P, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. J Electroanal Chem 756:69–76

    Article  CAS  Google Scholar 

  62. Yang J, Toshimitsu F, Yang Z, Fujigaya T, Nakashima N (2017) Pristine carbon nanotube/iron phthalocyanine hybrids with a well-defined nanostructure show excellent efficiency and durability for the oxygen reduction reaction. J Mater Chem A 5:1184–1191

    Article  CAS  Google Scholar 

  63. Yang J, Tao J, Isomura T, Yanagi H, Moriguchi I, Nakashima N (2019) A comparative study of iron phthalocyanine electrocatalysts supported on different nanocarbons for oxygen reduction reaction. Carbon 145:565–571

    Article  CAS  Google Scholar 

  64. Yang J, Ganesan P, Ishihara A, Nakashima N (2019) Carbon nanotube-based non-precious metal electrode catalysts for fuel cells, water splitting and zinc-air batteries. ChemCatChem 11:5929–5944

    Article  CAS  Google Scholar 

  65. Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S (2011) Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49:4839–4847

    Article  CAS  Google Scholar 

  66. Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55:6367–6375

    Article  CAS  Google Scholar 

  67. Venegas R, Recio FJ, Zuniga C, Viera M, Oyarzun MP, Silva N, Neira K, Marco JF, Zagal JH, Tasca F (2017) Comparison of the catalytic activity for O-2 reduction of Fe and Co MN4 adsorbed on graphite electrodes and on carbon nanotubes. Phys Chem Chem Phys 19(31):20441–20450

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez-Gaitan C, Ruiz-Rosas R, Morallon E, Cazorla-Amoros D (2017) Relevance of the interaction between the M-phthalocyanines and carbon nanotubes in the electroactivity toward ORR. Langmuir 33(43):11945–11955

    Article  CAS  PubMed  Google Scholar 

  69. Ramavathu LN, Maniam KK, Gopalram K, Chetty R (2012) Effect of pyrolysis temperature on cobalt phthalocyanine supported on carbon nanotubes for oxygen reduction reaction. J Appl Electrochem 42:945–951

    Article  CAS  Google Scholar 

  70. Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Non-platinum cathode catalysts for alkaline membrane fuel cells. Int J Hydrogen Energy 37:4406–4412

    Article  CAS  Google Scholar 

  71. Li C, Huang TX, Huang ZD, Sun JP, Zong C, Yang JG, Deng EN, Dai FN (2019) A sulfonated cobalt phthalocyanine/carbon nanotube hybrid as a bifunctional oxygen electrocatalyst. Dalton Trans 48(46):17258–17265

    Article  CAS  PubMed  Google Scholar 

  72. Ralbag N, Mann-Lahav M, Davydova ES, Ash U, Galed R, Handl M, Hiesgen R, Magliocca E, Mustain W, He J, Cong P, Beale AM, Grader GS, Avnir D, Dekel DR (2019) Composite materials with combined electronic and ionic properties. Matter 1:959–975

    Article  Google Scholar 

  73. Peng X, Omasta TJ, Roller JM, Mustain WE (2017) Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells. Frontiers in Energy 11:299–309

    Article  Google Scholar 

  74. Omasta TJ, Peng X, Miller HA, Vizza F, Wang LQ, Varcoe JR, Dekel DR, Mustain WE (2018) Beyond 1.0 W cm(−2) performance without platinum: the beginning of a new era in anion exchange membrane fuel cells. J Electrochem Soc 165:J3039–J3044

    Article  CAS  Google Scholar 

  75. Li XG, Popov BN, Kawahara T, Yanagi H (2011) Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. J Power Sources 196:1717–1722

    Article  CAS  Google Scholar 

  76. Miller HA, Lavacchi A, Vizza F, Marelli M, Di Benedetto F, Acapito FDI, Paska Y, Page M, Dekel DR (2016) A Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew Chem Int Ed 55:6004–6007

    Article  CAS  Google Scholar 

  77. Bellini M, Pagliaro MV, Lenarda A, Fornasiero P, Marelli M, Evangelisti C, Innocenti M, Jia QY, Mukerjee S, Jankovic J, Wang LQ, Varcoe JR, Krishnamurthy CB, Grinberg I, Davydova E, Dekel DR, Miller HA, Vizza F (2019) Palladium-ceria catalysts with enhanced alkaline hydrogen oxidation activity for anion exchange membrane fuel cells. ACS Appl Energy Mater 2:4999–5008

    Article  CAS  Google Scholar 

  78. Dekel DR (2018) Review of cell performance in anion exchange membrane fuel cells. J Power Sources 375:158–169

    Article  CAS  Google Scholar 

  79. Gottesfeld S, Dekel DR, Page M, Bae C, Yan YS, Zelenay P, Kim YS (2018) Anion exchange membrane fuel cells: current status and remaining challenges. J Power Sources 375:170–184

    Article  CAS  Google Scholar 

  80. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu TW, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191

    Article  CAS  Google Scholar 

  81. Firouzjaie HA, Mustain WE (2020) Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal 10:225–234

    Article  CAS  Google Scholar 

  82. Praats R, Kruusenberg I, Käärik M, Joost U, Aruväli J, Paiste P, Saar R, Rauwel P, Kook M, Leis J, Zagal JH, Tammeveski K (2019) Electroreduction of oxygen in alkaline solution on iron phthalocyanine modified carbide-derived carbons. Electrochim Acta 299:999–1010

    Article  CAS  Google Scholar 

  83. Praats R, Käärik M, Kikas A, Kisand V, Aruväli J, Paiste P, Merisalu M, Leis J, Sammelselg V, Zagal JH, Holdcroft S, Nakashima N, Tammeveski K (2020) Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts. Electrochim Acta 334:135575

    Article  CAS  Google Scholar 

  84. Alexeyeva N, Tammeveski K (2007) Electrochemical reduction of oxygen on multiwalled carbon nanotube modified glassy carbon electrodes in acid media. Electrochem Solid-State Lett 10:F18–F21

    Article  CAS  Google Scholar 

  85. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  86. Wang LQ, Magliocca E, Cunningham EL, Mustain WE, Poynton SD, Escudero-Cid R, Nasef MM, Ponce-Gonzalez J, Bance-Souahli R, Slade RCT, Whelligan DK, Varcoe JR (2017) An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem 19:831–843

    Article  CAS  Google Scholar 

  87. Ratso S, Kruusenberg I, Sarapuu A, Kook M, Rauwel P, Saar R, Aruväli J, Tammeveski K (2016) Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon nanotubes in acid media. Electrochim Acta 218:303–310

    Article  CAS  Google Scholar 

  88. Ratso S, Kruusenberg I, Sarapuu A, Rauwel P, Saar R, Joost U, Aruväli J, Kanninen P, Kallio T, Tammeveski K (2016) Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application. J Power Sources 332:129–138

    Article  CAS  Google Scholar 

  89. Arechederra RL, Artyushkova K, Atanassov P, Minteer SD (2010) Growth of phthalocyanine doped and undoped nanotubes using mild synthesis conditions for development of novel oxygen reduction catalysts. ACS Appl Mater Interfaces 2(11):3295–3302

    Article  CAS  PubMed  Google Scholar 

  90. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  91. Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297

    Article  CAS  Google Scholar 

  92. Lide DR (2001) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  93. Kruusenberg I, Ramani D, Ratso S, Joost U, Saar R, Rauwel P, Kannan AM, Tammeveski K (2016) Cobalt–nitrogen Co-doped carbon nanotube cathode catalyst for alkaline membrane fuel cells. ChemElectroChem 3:1455–1465

    Article  CAS  Google Scholar 

  94. Ratso S, Kruusenberg I, Käärik M, Kook M, Saar R, Kanninen P, Kallio T, Leis J, Tammeveski K (2017) Transition metal-nitrogen co-doped carbide-derived carbon catalysts for oxygen reduction reaction in alkaline direct methanol fuel cell. Appl Catal B-Environ 219:276–286

    Article  CAS  Google Scholar 

  95. Ratso S, Kruusenberg I, Käärik M, Kook M, Puust L, Saar R, Leis J, Tammeveski K (2018) Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells. J Power Sources 375:233–243

    Article  CAS  Google Scholar 

  96. Sarapuu A, Samolberg L, Kreek K, Koel M, Matisen L, Tammeveski K (2015) Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. J Electroanal Chem 746:9–17

    Article  CAS  Google Scholar 

  97. Kreek K, Sarapuu A, Samolberg L, Joost U, Mikli V, Koel M, Tammeveski K (2015) Cobalt-containing nitrogen-doped carbon aerogels as efficient electrocatalysts for the oxygen reduction reaction. ChemElectroChem 2:2079–2088

    Article  CAS  Google Scholar 

  98. Kisand K, Sarapuu A, Peikolainen AL, Seemen H, Kook M, Käärik M, Leis J, Sammelselg V, Tammeveski K (2018) Oxygen reduction on Fe- and Co-containing nitrogen-doped nanocarbons. ChemElectroChem 5:2002–2009

    Article  CAS  Google Scholar 

  99. Silva T, Mooste M, Kibena-Põldsepp E, Matisen L, Merisalu M, Kook M, Sammelselg V, Tammeveski K, Wilhelm M, Rezwan K (2019) Polymer-derived co/Ni-SiOC(N) ceramic electrocatalysts for oxygen reduction reaction in fuel cells. Catal Sci Technol 9:854–866

    Article  Google Scholar 

  100. Teppor P, Jäger R, Härk E, Tallo I, Joost U, Kook M, Paiste P, Smits K, Kirsimäe K, Lust E (2018) ORR activity and stability of Co-N/C catalysts based on silicon carbide derived carbon and the impact of loading in acidic media. J Electrochem Soc 165:F1217–F1223

    Article  CAS  Google Scholar 

  101. Guo JS, He H, Chu D, Chen RR (2012) OH-binding effects on metallophthalocyanine catalysts for O2 reduction reaction in anion exchange membrane fuel cells. Electrocatalysis 3:252–264

    Article  CAS  Google Scholar 

  102. Zhu T, Qing X, Xu P, Song Y, Qiao J (2015) H2/O2 alkaline membrane fuel cell performances using carbon-supported metal phthalocyanine (MPc/C,M = Co, Cu, Zn, Ni) as cathode catalysts. ECS Trans 66:105–110

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Estonian Research Council grant PRG723 and by institutional research funding (IUT34-14) of the Estonian Ministry of Education and Research. This research was also supported by the EU through the European Regional Development Fund (TK141, “Advanced materials and high-technology devices for energy recuperation systems”). The fuel cell tests were partially funded by the EU Horizon 2020 research and innovation program (Grant No. 721065); by the Ministry of National Infrastructure, Energy and Water Resources of Israel (Grant No. 3-13671) and by the Melvyn & Carolyn Miller Fund for Innovation, as well as the support of Planning & Budgeting Committee / ISRAEL Council for Higher Education (CHE) and Fuel Choice Initiative (Prime Minister Office of ISRAEL), within the framework of “Israel National Research Center for Electrochemical Propulsion (INREP)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaido Tammeveski.

Additional information

This paper is dedicated to Prof. José H. Zagal on the occasion of his 70th birthday and in recognition of his contribution to the electrochemistry of transition metal macrocyclic complexes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praats, R., Käärik, M., Kikas, A. et al. Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts. J Solid State Electrochem 25, 57–71 (2021). https://doi.org/10.1007/s10008-020-04543-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04543-z

Keywords

Navigation