Skip to main content

Advertisement

Log in

High-performance flexible freestanding polypyrrole-coated CNF film electrodes for all-solid-state supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nowadays, supercapacitors based on cellulose nanofibril (CNF) films have attracted extensive interest due to their excellent flexibility, light weight, and unique structure. Herein, we report that highly conductive films are prepared through polypyrrole (PPy) coating on CNF films by a simple and low-cost “soak and polymerization” method. The optimized flexible film features a high electrical conductivity of 23.77 S cm−1, a superior tensile strength of 71.4 MPa, outstanding conductance stability, and a good thermal stability. Additionally, the hybrid film as a freestanding and binder-free supercapacitor electrode can provide a high areal capacitance (2.26 F cm−2 at 2 mA cm−2) and good cyclic stability (a capacitance retention of 70.5% after 5000 cycles). Remarkably, an all-solid-state flexible supercapacitor assembled by two pieces of the optimized PPy-coated CNF (PPy/CNF) film electrodes delivers an excellent areal capacitance of 1.39 F cm−2 at 0.1 mA cm−2, revealing an ultrahigh energy density of 16.95 mWh cm−3 at a power density of 1.2 mW cm−3.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nystrom G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639

    PubMed  PubMed Central  Google Scholar 

  2. Wan CC, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5:3819–3831

    CAS  Google Scholar 

  3. Yuan LY, Yao B, Hu B, Huo KF, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6:470–476

    CAS  Google Scholar 

  4. Kou L, Huang TQ, Zheng BN, Han Y, Zhao XL, Gopalsamy K, Sun HY, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:3754

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pech D, Brunet M, Durou H, Huang PH, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651–654

    CAS  PubMed  Google Scholar 

  6. Zheng QF, Kvit A, Cai ZY, Ma ZQ, Gong SQ (2017) A freestanding cellulose nanofibril-reduced graphene oxide-molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density. J Mater Chem A 5:12528–12541

    CAS  Google Scholar 

  7. Yan J, Wang Q, Wei T, Fan ZJ (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:43

    Google Scholar 

  8. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    CAS  Google Scholar 

  9. Wang ZH, Carlsson DO, Tammela P, Hua K, Zhang P, Nyholm L, Strømm M (2015) Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9:7563–7571

    CAS  PubMed  Google Scholar 

  10. Wang ZH, Tammela P, Strømme M, Nyholm L (2015) Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 7(8):3418–3423

    CAS  PubMed  Google Scholar 

  11. Yuan LY, Xiao X, Ding TP, Zhong JW, Zhang XH, Shen Y, Hu B, Huang YH, Zhou J, Wang ZL (2012) Paper-based supercapacitors for self-powered nanosystems. Angew Chem-Int Edit 51:4934–4938

    CAS  Google Scholar 

  12. Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    CAS  PubMed  Google Scholar 

  13. Yao B, Yuan LY, Xiao X, Zhang J, Qi YY, Zhou J, Zhou J, Hu B, Chen W (2013) Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2:1071–1078

    CAS  Google Scholar 

  14. Anothumakkool B, Soni R, Bhangea SN, Kurungot S (2015) Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci 8:1339–1347

    CAS  Google Scholar 

  15. Anothumakkool B, Agrawal I, Bhangea SN, Soni R, Game O, Ogale SB, Kurungot S (2016) Pt- and TCO-free flexible cathode for DSSC from highly conducting and flexible PEDOT paper prepared via in situ interfacial polymerization. ACS Appl Mater Interfaces 8(1):553–562

    CAS  PubMed  Google Scholar 

  16. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv mater 23:2076

    CAS  PubMed  Google Scholar 

  17. Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12(7):3803–3807

    CAS  PubMed  Google Scholar 

  18. Guan C, Li XL, Wang ZL, Cao XH, Soci C, Zhang H, Fan HJ (2012) Nanoporous walls on macroporous foam: rational design of electrodes to push areal pseudocapacitance. Adv Mater 24(30):4186–4190

    CAS  PubMed  Google Scholar 

  19. Choi D, Blomgren GE, Kumta PN (2006) Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 18:1178

    CAS  Google Scholar 

  20. Lu XH, Wang GM, Zhai T, Yu MH, Xie SL, Ling YC, Liang CL, Tong YX, Li YX (2012) Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12:5376–5381

    CAS  PubMed  Google Scholar 

  21. Huang J, Zhu HL, Chen YC, Preston C, Rohrbach K, Cumings J, Hu LB (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113

    CAS  PubMed  Google Scholar 

  22. Jung YH, Chang TH, Zhang HL, Yao CH, Zheng QF, Yang VW, Mi HY, Kim M, Cho SJ, Park DW, Jiang H, Lee J, Qiu YJ, Zhou WD, Cai ZY, Gong SQ, Ma ZQ (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:11

    Google Scholar 

  23. Carlsson DO, Nystrom G, Zhou Q, Berglund LA, Nyholm L, Stromme M (2012) Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J Mater Chem 22:19014–19024

    CAS  Google Scholar 

  24. Du X, Zhang Z, Liu W, Deng YL (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices - a review. Nano Energy 35:299–320

    CAS  Google Scholar 

  25. Yang JW, Xie HA, Chen H, Shi ZQ, Wu T, Yang QL, Xiong CX (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411

    CAS  Google Scholar 

  26. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253

    CAS  PubMed  Google Scholar 

  27. Mo MM, Chen CC, Gao H, Chen MW, Li DG (2018) Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors. Electrochim Acta 269:11–20

    CAS  Google Scholar 

  28. Benitez AJ, Torres-Rendon J, Poutanen M, Walther A (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14(12):4497–4506

    CAS  PubMed  Google Scholar 

  29. Omastová M, Trchová M, Pionteck J, Prokeš J, Stejskal J (2004) Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Synth Met 143:153–161

    Google Scholar 

  30. Patil BH, Bulakhe RN, Lokhande CD (2014) Supercapacitive performance of chemically synthesized polypyrrole thin films: effect of monomer to oxidant ratio. J Mater Sci-Mater In Electron 25:2188–2198

    CAS  Google Scholar 

  31. Liu Y, Zhou J, Tang J, Tang WH (2015) Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors. Chem Mater 27:7034–7041

    CAS  Google Scholar 

  32. Wang HH, Bian LY, Zhou PP, Tang J, Tang WH (2013) Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1:578–584

    CAS  Google Scholar 

  33. Tang H, Butchosa N, Zhou Q (2015) A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly (ethylene glycol). Adv Mater 27(12):2070–2076

    CAS  PubMed  Google Scholar 

  34. Nam S, Condon BD, Foston MB, Chang SC (2014) Enhanced thermal and combustion resistance of cotton linked to natural inorganic salt components. Cellulose 21:791–802

    CAS  Google Scholar 

  35. Yue BB, Wang CY, Ding X, Wallacea GG (2012) Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta 68:18–24

    CAS  Google Scholar 

  36. Xu J, Zhu LG, Bai ZK, Liang GJ, Liu L, Fang D, Xu WL (2013) Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org Electron 14:3331–3338

    CAS  Google Scholar 

  37. Weng Z, Su Y, Wang DW, Li F, Du JH, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922

    CAS  Google Scholar 

  38. Zhao J, Jiang YF, Fan H, Liu M, Zhuo O, Wang XZ, Wu Q, Yang LJ, Ma YW, Hu Z (2017) Porous 3D few layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure–performance relationship. Adv Mater 29:8

    Google Scholar 

  39. Qi Z, Ye JC, Chen W, Biener J, Duoss EB, Spadaccini CM, Worsley MA, Zhu C (2018) 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv Mater Technol 3:8

    Google Scholar 

  40. Yang LF, Shi Z, Yang WH (2015) Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor. Electrochim Acta 153:76–82

    CAS  Google Scholar 

  41. Ma C, Cao WT, Xin W, Bian J, Ma MG (2019) Flexible and free-standing reduced graphene oxide and polypyrrole coated air-laid paper-based supercapacitor electrodes. Ind Eng Chem Res 58:12018–12027

    CAS  Google Scholar 

  42. Kang YJ, Chung H, Han CH, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23:6

    Google Scholar 

  43. El-Kady FE, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330

    CAS  PubMed  Google Scholar 

  44. Gao Y, Jin HY, Lin QF, Li X, Tavakoli MM, Leung SF, Tang WM, Zhou LM, Chan HLW, Fan ZY (2015) Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/au/MnO2 nanospike arrays. J Mater Chem A 3:10199–10204

    CAS  Google Scholar 

  45. Chen YX, Cai KF, Liu CC, Song HJ, Yang XW (2017) High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors. Adv Energy Mater 7:1701247

    Google Scholar 

  46. Wang X, Liu QC, Wu SY, Xu BX, Xu HX (2019) Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv Mater 31:1807716

    Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (2017YFD0600804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Yao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Wang, Y., Liang, S. et al. High-performance flexible freestanding polypyrrole-coated CNF film electrodes for all-solid-state supercapacitors. J Solid State Electrochem 24, 533–544 (2020). https://doi.org/10.1007/s10008-019-04491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04491-3

Keywords

Navigation