Skip to main content

Advertisement

Log in

Hybrid material of polyaniline incorporated industrial waste of fly ash to enhance the electrode performance of polyaniline in supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The existing high market potential for supercapacitors in electric vehicles created enthusiasm for the development of safer and high-performance supercapacitor gadgets. The ongoing examination endeavors on electrochemical power sources are composed toward achieving high-explicit energy, high-explicit power, long-cycle life, and so forth, at a realistic cost. In this work, low-cost hybrid material of polyaniline-sulfate salt and ash from the bituminous coal is synthesized via in situ polymerization of aniline. The formation of hybrid in this polymerization process was confirmed from FTIR, XRD, EDAX, and TGA. Thus, prepared polyaniline-sulfate●ash (PANI-ash) hybrid is taken as electro-active material for the construction of supercapacitor cell in a symmetric configuration in 1 M H2SO4 electrolyte. PANI-ash, wherein ash prepared at 600 oC of bituminous coal, gave higher electrochemical performance compared to its individual components of PANI and ash materials. Initial specific capacitance observed for the samples of PANI, PANI-A400, and PANI-A600 are 155, 328, and 363 F g−1, respectively. PANI-A600 symmetric cell system subjected to a higher current density of 0.75 A g−1 for 10,000 cycles. Remaining in specific capacitance values of polyaniline salts at 10,000 CD cycles is found to be 70 %, and further at 35,000 cycles, it shows 43% retention of specific capacitance.

Hybrid material of polyaniline incorporated industrial waste of fly ash to enhance the electrode performance of polyaniline in supercapacitor application

Sangam Naidu Karri, Sai Prasad Ega, Palaniappan Srinivasan*

Overall, in this work, bituminous coal was subjected at 400 and 600 oC, obtained Al and Si oxides and made low-cost hybrid of polyaniline-sulfate with ash of bituminous coal (PANI-H2SO4●Al2O3●SiO2). This material is utilized as electro-active material in pseudo-capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig 3.
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270.

    Article  CAS  Google Scholar 

  2. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  3. Liu F-J, Hsu T-F, Yang C-H (2009) Construction of composite electrodes comprising manganese dioxide nanoparticles distributed in polyaniline–poly(4-styrene sulfonic acid-co-maleic acid) for electrochemical supercapacitor. J Power Sources 191:678–683

    Article  CAS  Google Scholar 

  4. Ghenaatian HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159:1717–1722

    Article  CAS  Google Scholar 

  5. Cao C-Y, Guo W, Cui Z-M et al (2011) Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J Mater Chem 21:3204

    Article  CAS  Google Scholar 

  6. Endut Z, Hamdi M, Basirun WJ (2013) Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 528:213–216

    Article  CAS  Google Scholar 

  7. Zhong J-H, Wang A-L, Li G-R et al (2012) Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J Mater Chem 22:5656–5665

    Article  CAS  Google Scholar 

  8. Li R, Ren X, Zhang F, du C, Liu J (2012) Synthesis of Fe3O4@SnO2 core–shell nanorod film and its application as a thin-film supercapacitor electrode. Chem Commun 48(41):5010–5012

    Article  CAS  Google Scholar 

  9. Li F, Xing Y, Huang M et al (2015) MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J Mater Chem A 3:7855–7861

    Article  CAS  Google Scholar 

  10. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route. ACS Appl Mater Interfaces 5(6):2188–2196

    Article  CAS  Google Scholar 

  11. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107

    Article  CAS  Google Scholar 

  12. Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46:1510–1525

    Article  CAS  Google Scholar 

  13. Guo F, Liu Q, Mi H (2016) Flexible and cross-linked polyaniline nets as promising supercapacitor electrodes. Mater Lett 163:115–117

    Article  CAS  Google Scholar 

  14. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  15. Kim KM, Lee Y-G, Shin DO, Ko JM (2016) Supercapacitive properties of layered electrodes composed of electrodeposited RuO2 and polyaniline. Electrochim Acta 196:309–315

    Article  CAS  Google Scholar 

  16. Singu BS, Palaniappan S, Yoon KR (2016) Polyaniline–nickel oxide nanocomposites for supercapacitor. J Appl Electrochem 46:1039–1047

    Article  CAS  Google Scholar 

  17. Padwal PM, Kadam SL, Mane SM, Kulkarni SB (2016) Enhanced specific capacitance and supercapacitive properties of polyaniline–iron oxide (PANI–Fe2O3) composite electrode material. J Mater Sci 51:10499–10505

    Article  CAS  Google Scholar 

  18. Jabeen N, Xia Q, Yang M, Xia H (2016) Unique core–shell nanorod arrays with polyaniline deposited into mesoporous NiCo2O4 support for high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 8(9):6093–6100

    Article  CAS  Google Scholar 

  19. Liang M, Liu X, Li W, Wang Q (2016) A tough nanocomposite aerogel of manganese oxide and polyaniline as an electrode for a supercapacitor. Chempluschem 81:40–43

    Article  CAS  Google Scholar 

  20. Huang K-J, Wang L, Liu Y-J et al (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594

    Article  CAS  Google Scholar 

  21. Hu Z-A, Xie Y-L, Wang Y-X et al (2009) Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater Chem Phys 114:990–995

    Article  CAS  Google Scholar 

  22. Chen SM, Ramachandran R, Mani V, Saraswathi R (2014) Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: A review. Int J Electrochem Sci 9:4072–4085

    Google Scholar 

  23. Chen L, Sun L-J, Luan F et al (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195:3742–3747

    Article  CAS  Google Scholar 

  24. Zu L, Cui X, Jiang Y et al (2015) Preparation and electrochemical characterization of mesoporous polyaniline-silica nanocomposites as an electrode material for pseudocapacitors. Mater (Basel, Switzerland) 8:1369–1383

    Article  CAS  Google Scholar 

  25. Wei H, Gu H, Guo J et al (2013) Silica doped nanopolyaniline with endured electrochemical energy storage and the magnetic field effects. J Phys Chem C 117:13000–13010

    Article  CAS  Google Scholar 

  26. Liu Q, Nayfeh MH, Siu-Tung Y (2010) Supercapacitor electrodes based on polyaniline– silicon nanoparticle composite. J Power Sources 195:3956–3959

    Article  CAS  Google Scholar 

  27. Arjomandi J, Lee JY, Movafagh R et al (2018) Polyaniline/aluminum and iron oxide nanocomposites supercapacitor electrodes with high specific capacitance and surface area. J Electroanal Chem 810:100–108

    Article  CAS  Google Scholar 

  28. Uppugalla S, Male U, Srinivasan P (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochim Acta 146:242–248

    Article  CAS  Google Scholar 

  29. Karri SN, Male U, Srinivasan P (2019) Polyaniline salt catalyzed synthesis of hyperbranched polyester and its use as dopant in polyaniline salt for coating, fluorescence, and supercapacitor electrode. Ionics (Kiel) 25:191–202

    Article  CAS  Google Scholar 

  30. Chandrakanthi RL, Careem M (2002) Preparation and characterization of CdS and Cu2S nanoparticle/polyaniline composite films. Thin Solid Films 417:51–56

    Article  CAS  Google Scholar 

  31. de la Puente G, Marbán G, Fuente E, Pis J (1998) Modelling of volatile product evolution in coal pyrolysis. The role of aerial oxidation J Anal Appl Pyrolysis 44:205–218

    Article  Google Scholar 

  32. Sumboja A, Foo CY, Yan J et al (2012) Significant electrochemical stability of manganese dioxide/polyaniline coaxial nanowires by self-terminated double surfactant polymerization for pseudocapacitor electrode. J Mater Chem 22:23921–23928

    Article  CAS  Google Scholar 

  33. Prasankumar T, Wiston BR, Gautam CR et al (2018) Synthesis and enhanced electrochemical performance of PANI/Fe3O4 nanocomposite as supercapacitor electrode. J Alloys Compd 757:466–475

    Article  CAS  Google Scholar 

  34. Girija TC, Sangaranarayanan MV (2006) Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156:705–711

    Article  CAS  Google Scholar 

  35. Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors-Influence of Triton X-100. J Power Sources 159:1519–1526

    Article  CAS  Google Scholar 

  36. Metikoš-Huković M, Omanović S (1998) Thin indium oxide film formation and growth: Impedance spectroscopy and cyclic voltammetry investigations. J Electroanal Chem 455:181–189

    Article  Google Scholar 

  37. Guan H, Fan LZ, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56:964–968

    Article  CAS  Google Scholar 

  38. Zhou H, Chen H, Luo S et al (2005) The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J Solid State Electrochem 9:574–580

    Article  CAS  Google Scholar 

Download references

Funding

We thank CSIR, New Delhi, India for financial support under the program of TAPSUN (NWP-0056). We are thankful to Dr. S. Chandrasekhar, Director, CSIR-IICT for his support and encouragement. Authors also thank Dr. C.S. Gopinath, Chief Scientist, CSIR-NCL, Pune, India, for his help in recording XPS spectra. SNK thanks UGC, India, and SPE thanks CSIR India for financial Support. CSIR-IICT communication no. IICT/Pubs./2018/369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaniappan Srinivasan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karri, S.N., Ega, S.P. & Srinivasan, P. Hybrid material of polyaniline incorporated industrial waste of fly ash to enhance the electrode performance of polyaniline in supercapacitor application. J Solid State Electrochem 23, 3231–3242 (2019). https://doi.org/10.1007/s10008-019-04414-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04414-2

Keywords

Navigation