Skip to main content
Log in

Improving of the battery performance of Dy-substituted LiCoO2 and investigating the mechanism of the cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we successfully fabricated LiCo1-xDyxO2 (where x = 0.0–0.5) samples and investigated the structural and electrochemical properties. The Dy-substituted LiCoO2 samples were characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Fourier-transform infrared (FTIR), and Raman measurements before and after cycling. The lattice volume and effective magnetic moment were increased by the substitution of the Dy ions in the structure. The capacity fading mechanism of Dy-substituted LiCoO2 via ex situ X-ray diffraction, XAS, Raman and FTIR spectroscopy were investigated. According to the electrochemical performance of the batteries, the x = 0.04 electrode had better cycling properties up to 400 cycles, which are better than that of the pure LiCoO2. We suggested that the critical number of Dy in LiCoO2 facilitates the Li-diffusion by increasing lattice volume. According to the battery performance temperature dependence analysis from 10 to 50 °C, the electrolyte just below degradation temperature shows better cycling since the ions are more mobile in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22(9):3680

    Article  CAS  Google Scholar 

  2. Pang C, Xu G, An W, Ding G, Liu X, Chai J, Ma J, Liu H, Cui G (2017) Three-component functional additive in a LiPF6-based carbonate electrolyte for a high-voltage LiCoO2/graphite battery system. Energy Technol 5(11):1979–1989

    Article  CAS  Google Scholar 

  3. Yazami R, Lebrun N, Bonneau M, Molteni M (1995) High performance LiCoO2 positive electrode material. J Power Sources 54(2):389–392

    Article  CAS  Google Scholar 

  4. Davidson IJ, McMillan RS, Murray JJ, Greedan JE (1995) Lithium-ion cell based on orthorhombic LiMnO2. J Power Sources 54(2):232–235

    Article  CAS  Google Scholar 

  5. Kleiner K, Melke J, Merz M, Jakes P, Nagel P, Schuppler S, Liebau V, Ehrenberg H (2015) Unraveling the degradation process of LiNi 08 co 015 Al 005 O 2 electrodes in commercial lithium ion batteries by electronic structure investigations. ACS Appl Mater Interfaces 7(35):19589–19600

    Article  CAS  PubMed  Google Scholar 

  6. An C, Zhang B, Tang L, Xiao B, Zheng J (2018) Ultrahigh rate and long-life nano-LiFePO4 cathode for Li-ion batteries. Electrochim Acta 283:385–392

    Article  CAS  Google Scholar 

  7. Reddy MV, Jie TW, Jafta CJ, Mathe MK, Nair AS, Peng SS, Idris MS, Balakrishna G, Ezema FI, Chowdari BVR (2014) Studies on bare and mg-doped LiCoO2 as a cathode material for lithium-ion batteries. Electrochim Acta 128:192–197

    Article  CAS  Google Scholar 

  8. Wang F, Jiang Y, Lin S, Wang W, Hu C, Wei Y, Mao B, Liang C (2019) High-voltage performance of LiCoO2 cathode studied by single particle microelectrodes – an influence of surface modification with TiO2. Electrochim Acta 295:1017–1026

    Article  CAS  Google Scholar 

  9. Ram P, Goren A, Ferdov S, Silva MM, Singhal R, Costa CM, Sharma RK, Lanceros-Mendez S (2016) Improved performance of rare earth doped LiMn2O4 cathodes for lithium-ion battery applications. New J Chem 40(7):6244–6252

    Article  CAS  Google Scholar 

  10. Hu S, Wang C, Zhou L, Zeng X, Shao L, Zhou J, Zhou C, Huang C, Xi X, Yang L (2018) Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nano-bricks for high-rate lithium-ion batteries. Ceram Int 44(13):14995–15000

    Article  CAS  Google Scholar 

  11. Kwon T, Ohnishi T, Mitsuishi K, Ozawa TC, Takada K (2015) Synthesis of LiCoO2 epitaxial thin films using a sol-gel method. J Power Sources 274:417–423

    Article  CAS  Google Scholar 

  12. Nishio K, Ohnishi T, Osada M, Ohta N, Watanabe K, Takada K (2016) Influences of high deposition rate on LiCoO2 epitaxial films prepared by pulsed laser deposition. Solid State Ionics 285:91–95

    Article  CAS  Google Scholar 

  13. Jung YS, Lu P, Cavanagh AS, Ban C, Kim G-H, Lee S-H, George SM, Harris SJ, Dillon AC (2013) Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Adv Energy Mater 3(2):213–219

    Article  CAS  Google Scholar 

  14. Mauger A, Julien CM (2015) Nanoscience supporting the research on the negative electrodes of Li-ion batteries. Nanomater 5:2279–2301

    Article  CAS  Google Scholar 

  15. Wang G, Li H, Zhang Q, Yu Z, Qu M (2011) The study of carbon nanotubes as conductive additives of cathode in lithium ion batteries. J Solid State Electrochem 15(4):759–764

    Article  CAS  Google Scholar 

  16. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Article  PubMed  CAS  Google Scholar 

  17. Sides CR, Li N, Patrissi CJ, Scrosati B, Martin CR (2002) Nanoscale materials for lithium-ion batteries. MRS Bull 27(8):604–607

    Article  CAS  Google Scholar 

  18. Kang S-H, Goodenough AJB, Rabenberg LK (2001) Effect of ball-milling on 3-V capacity of lithium−manganese oxospinel cathodes. Chem Mater 13(5):1758–1764

    Article  CAS  Google Scholar 

  19. Ghosh P, Mahanty S, Basu RN (2009) Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochim Acta 54:1654–1661

    Article  CAS  Google Scholar 

  20. Gopukumar S, Jeong Y, Kim KB (2003) Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ionics 159(3-4):223–232

    Article  CAS  Google Scholar 

  21. Venkatraman S, Subramanian V, Gopu Kumar S, Ranganathan N, Muniyandi N (2000) Capacity of layered cathode materials for lithium-ion batteries — a theoretical study and experimental evaluation. Electrochem Commun 2(1):18–22

    Article  CAS  Google Scholar 

  22. Ceder G, Chiang Y-M, Sadoway DR, Aydinol MK, Jang Y-I, Huang B (1998) Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392(6677):694–696

    Article  CAS  Google Scholar 

  23. Antolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties. Solid State Ionics 170(3-4):159–171

    Article  CAS  Google Scholar 

  24. Park Y, Shin SH, Hwang H, Lee SM, Kim SP, Choi HC (2014) Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J Mol Struct 1069:157–163

    Article  CAS  Google Scholar 

  25. Jo M, Hong Y-S, Choo J, Cho J (2009) Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J Electrochem Soc 156(6):A430

    Article  CAS  Google Scholar 

  26. Chang Z, Chen Z, Wu F, Tang H, Yuan XZ, Wang H (2008) Synthesis and characterization of nonspherical LiCoO2 with high tap density by two-step drying method. Electrochem Solid-State Lett 11(12):A229

    Article  CAS  Google Scholar 

  27. Liu L, Wang Z, Li H, Chen L, Huang X (2002) Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics 152–153:341–346

    Article  Google Scholar 

  28. Jayasree SS, Nair S, Santhanagopalan D (2018) Ultrathin TiO 2 coating on LiCoO 2 for improved electrochemical performance as Li-ion battery cathode. ChemistrySelect 3(10):2763–2766

    Article  CAS  Google Scholar 

  29. Liu GQ, Kuo HT, Liu RS, Shen CH, Shy DS, Xing XK, Chen JM (2010) Study of electrochemical properties of coating ZrO2 on LiCoO2. J Alloys Compd 496(1-2):512–516

    Article  CAS  Google Scholar 

  30. Farid G, Murtaza G, Umair M, Arif HS, Ali HS, Muhammad N, Ahmad M (2018) Effect of La-doping on the structural, morphological and electrochemical properties of LiCoO2 nanoparticles using sol-gel technique. Mater Res Express 5(5):055044

    Article  CAS  Google Scholar 

  31. Valanarasu S, Chandramohan R, Somasundaram RM, Srikumar SR (2011) Structural and electrochemical properties of Eu-doped LiCoO2. J Mater Sci Mater Electron 22:151–157

    Article  CAS  Google Scholar 

  32. Bhuvaneswari S, Varadaraju UV, Gopalan R, Prakash R (2019) Structural stability and superior electrochemical performance of Sc-doped LiMn2O4 spinel as a cathode for lithium-ion batteries. Electrochim Acta 301:342–351

    Article  CAS  Google Scholar 

  33. Michalska M, Ziółkowska DA, Jasiński JB, Lee P-H, Ławniczak P, Andrzejewski B, Ostrowski A, Bednarski W, Wu S-H, Lin J-Y (2018) Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim Acta 276:37–46

    Article  CAS  Google Scholar 

  34. Yi T-F, Yin L-C, Ma Y-Q, Shen H-Y, Zhu Y-R, Zhu R-S (2013) Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceram Int 39(4):4673–4678

    Article  CAS  Google Scholar 

  35. Wang L, Jiao C, Liang G, Zhao N, Wang Y, Li L (2014) Effect of rare earth ions doping on properties of LiFePO4/C cathode material. J Rare Earths 32895–899

  36. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. J Appl Crystallogr 46(2):544–549

    Article  CAS  Google Scholar 

  37. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oz E, Altin S, Demirel S, Bayri A, Altin E, Baglayan O, Avci S (2016) Electrochemical effects and magnetic properties of B substituted LiCoO2: improving Li-battery performance. J Alloys Compd 657:835–847

    Article  CAS  Google Scholar 

  39. Needham SA, Wang GX, Liu HK, Drozd VA, Liu RS (2007) Synthesis and electrochemical performance of doped LiCoO2 materials. J Power Sources 174(2):828–831

    Article  CAS  Google Scholar 

  40. Julien C (2000) Local environment in 4-volt cathode materials for Li-ion batteries, in mater Lithium-ion batter. Springer Netherlands, Dordrecht, pp 309–326

    Book  Google Scholar 

  41. Rao KJ, Benqlilou-Moudden H, Desbat B, Vinatier P, Levasseur A (2002) Infrared spectroscopic study of LiCoO2 thin films. J Solid State Chem 165(1):42–47

    Article  CAS  Google Scholar 

  42. Danset D, Alikhani AME, Manceron L (2004) Reactivity of atomic cobalt with molecular oxygen: a combined IR matrix isolation and theoretical study of the formation and structure of CoO2. J Phys Chem A 109:97–104

    Article  CAS  Google Scholar 

  43. Wang Z, Huang X, Chen L (2003) Performance improvement of surface-modified LiCoO2 cathode materials: an infrared absorption and X-ray photoelectron spectroscopic investigation. J Electrochem Soc 150(2):A199

    Article  CAS  Google Scholar 

  44. Chandrasekhar M, Nagabhushana H, Sudheerkumar KH, Dhananjaya N, Sharma SC, Kavyashree D, Shivakumara C, Nagabhushana BM (2014) Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater Res Bull 55:237–245

    Article  CAS  Google Scholar 

  45. Shaaban KHS, Saddeek YB, Aly K (2018) Physical properties of pseudo quaternary Na2B4O7 – SiO2 – MoO3 – Dy2O3 glasses. Ceram Int 44(4):3862–3867

    Article  CAS  Google Scholar 

  46. Dilawar Sharma N, Singh J, Vijay A, Samanta K, Dogra S, Bandyopadhyay AK (2016) Pressure-induced structural transition trends in Nanocrystalline rare-earth sesquioxides: a Raman investigation. J Phys Chem C 120(21):11679–11689

    Article  CAS  Google Scholar 

  47. Gross T, Hess C (2014) Raman diagnostics of LiCoO2 electrodes for lithium-ion batteries. J Power Sources 256:220–225

    Article  CAS  Google Scholar 

  48. Inaba M, Todzuka Y, Yoshida H, Grincourt Y, Tasaka A, Tomida Y, Ogumi Z (1995) Raman spectra of LiCo1−yNiyO2. Chem Lett 24(10):889–890

    Article  Google Scholar 

  49. Okumura T, Yamaguchi Y, Shikano M, Kobayashi H (2012) Correlation of lithium-ion distribution and X-ray absorption near-edge structure in O3- and O2-lithium cobalt oxides from a first-principle calculation. J Mater Chem 22(33):17340

    Article  CAS  Google Scholar 

  50. Rosolen JM, Ballirano P, Berrettoni M, Decker F, Gregorkiewitz M (1997) Structural assessment of the electrochemical performance of LixCoO2 membrane electrodes by X-ray diffraction and absorption refinements. Ionics (Kiel) 3(5-6):345–355

    Article  CAS  Google Scholar 

  51. Laubach S, Laubach S, Schmidt PC, Ensling D, Schmid S, Jaegermann W, Thißen A, Nikolowski K, Ehrenberg H (2009) Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys Chem Chem Phys 11(17):3278

    Article  CAS  PubMed  Google Scholar 

  52. Hertz JT, Huang Q, McQueen T, Klimczuk T, Bos JWG, Viciu L, Cava RJ (2008) Magnetism and structure of Li x CoO 2 and comparison to Na x CoO 2. Phys Rev B 77(7):075119

    Article  CAS  Google Scholar 

  53. Demirel S, Oz E, Altin S, Bayri A, Baglayan O, Altin E, Avci S (2017) Structural, magnetic, electrical and electrochemical properties of SrCoO25, Sr9Co2Mn5O21 and SrMnO3 compounds. Ceram Int 43(17):14818–14826

    Article  CAS  Google Scholar 

  54. Wiberg E (2001) Arnold F Holleman. Academic Press, Inorganic chemistry

    Google Scholar 

  55. Jensen J, Mackintosh AR (1991) Rare earth magnetism: structures and excitations. Clarendon Press, Oxford

    Google Scholar 

  56. Oz E, Demirel S, Altin S, Altin E, Baglayan O, Bayri A, Avci S (2018) Fabrication of Ca-Mn-Nb-O compounds and their structural, electrical, magnetic and thermoelectric properties. Mater Res Express 5(3):036304

    Article  CAS  Google Scholar 

  57. Hausbrand R, Cherkashinin G, Ehrenberg H, Gröting M, Albe K, Hess C, Jaegermann W (2015) Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: methodology, insights and novel approaches. Mater Sci Eng B 192:3–25

    Article  CAS  Google Scholar 

  58. Oudenhoven JFM, van Dongen T, Niessen RAH, de Croon MHJM, Notten PHL (2009) Low-pressure chemical vapor deposition of LiCoO[sub 2] thin films: a systematic investigation of the deposition parameters. J Electrochem Soc 156(5):D169

    Article  CAS  Google Scholar 

  59. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139(8):2091

    Article  CAS  Google Scholar 

  60. Berlinsky J, Unruh WG, McKinnon WR, Haering RR (1979) Theory of lithium ordering in LixTiS2. Solid State Commun 31(3):135–138

    Article  CAS  Google Scholar 

  61. Han SC, Singh SP, Hwang Y, Bae EG, Park BK, Sohn K-S, Pyo M (2012) Gadolinium-doped LiMn 2 O 4 cathodes in Li-ion batteries: understanding the stabilized structure and enhanced electrochemical kinetics. J Electrochem Soc 159(11):A1867–A1873

    Article  CAS  Google Scholar 

  62. Jia X, Yan M, Zhou Z, Chen X, Yao C, Li D, Chen D, Chen Y (2017) Nd-doped LiNi05Co02Mn03O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochim Acta 254:50–58

    Article  CAS  Google Scholar 

  63. Göktepe H (2013) Electrochemical performance of Yb-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Res Chem Intermed 39(7):2979–2987

    Article  CAS  Google Scholar 

  64. Meng X, Han B, Wang Y (2016) J Nan, Effects of samarium doping on the electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries. Ceram Int 42(2):2599–2604

    Article  CAS  Google Scholar 

  65. Liu S, Zhao H, Tan M, Hu Y, Shu X, Zhang M, Chen B, Liu X (2017) Er-doped LiNi05Mn15O4 cathode material with enhanced cycling stability for lithium-ion batteries. Mater (Basel, Switzerland) 10:859

    Article  CAS  Google Scholar 

  66. Dolotko O, Senyshyn A, Mühlbauer MJ, Nikolowski K, Scheiba F, Ehrenberg H (2012) Fatigue process in Li-ion cells: an in situ combined neutron diffraction and electrochemical study. J Electrochem Soc 159(12):A2082–A2088

    Article  CAS  Google Scholar 

  67. Murdoch JY (2007) Diffusion and reactivity of solids. Publishers, Nova Science

    Google Scholar 

Download references

Funding

This study was supported by IUBAP (Inonu University Scientific Research Council)-FYL-2018-1030. The authors would like to thank  Dr. E. Oz for valuable contributions for data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Altin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altin, S., Altundag, S., Altin, E. et al. Improving of the battery performance of Dy-substituted LiCoO2 and investigating the mechanism of the cells. J Solid State Electrochem 23, 2881–2895 (2019). https://doi.org/10.1007/s10008-019-04391-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04391-6

Keywords

Navigation