Skip to main content
Log in

Pitting corrosion resistance of sensitized type 2205 duplex stainless steel in hot concentrated seawater

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Pitting corrosion resistance of 2205 duplex stainless steel aged at 850 °C was investigated in the hot concentrated seawater (i.e., the simulated low-temperature multi-effect distillation environment) by optical microscopy (OM), scanning electronic microscopy (SEM), and electrochemical measurement techniques. The precipitation of the σ phase leads to sensitization in the specimens during the aging treatment. The degree of sensitization (DOS) presents a maximum value with the change of σ phase content. The pitting corrosion resistance of the specimens degrades markedly in the presence of very weak sensitization. The pitting potential decreases almost linearly with the logarithm of DOS. The pit propagation mainly takes place along the Cr-depleted region around the σ phase. The repassivation ability of the specimens changes insignificantly with the aging time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khawaji AD, Kutubkhanah IK, Wie JM (2008) Advances in seawater desalination technologies. Desalination 221(1-3):47–69

    Article  CAS  Google Scholar 

  2. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717

    Article  CAS  PubMed  Google Scholar 

  3. Xin SS, Li MC (2014) Electrochemical corrosion characteristics of type 316L stainless steel in hot concentrated seawater. Corros Sci 81:96–101

    Article  CAS  Google Scholar 

  4. Hassan AM, Malik AU (1989) Corrosion resistant materials for seawater RO plants. Desalination 74:157–170

    Article  CAS  Google Scholar 

  5. Mahmoud H, Sánchez M, Alonso MC (2015) Ageing of the spontaneous passive state of 2304 duplex stainless steel in high-alkaline conditions with the presence of chloride. J Solid State Electrochem 19(10):2961–2972

    Article  CAS  Google Scholar 

  6. Xiong J, Tan MY, Forsyth M (2013) The corrosion behaviors of stainless steel weldments in sodium chloride solution observed using a novel electrochemical measurement approach. Desalination 327:39–45

    Article  CAS  Google Scholar 

  7. Zhang Z, Zhao H, Zhang H, Hu J, Jin J (2017) Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment. Corros Sci 121:22–31

    Article  CAS  Google Scholar 

  8. Zhang Z, Wang Z, Jiang Y, Tan H, Han D, Guo Y, Li J (2012) Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds. Corros Sci 62:42–50

    Article  CAS  Google Scholar 

  9. Arutunow A, Darowicki K (2008) Impact of sensitization on dissolution process of AISI 304 stainless steel during intergranular corrosion evaluated using DEIS technique. J Solid State Electrochem 13:1687–1694

    Article  CAS  Google Scholar 

  10. Lee KM, Cho HS, Choi DC (1999) Effect of isothermal treatment of SAF 2205 duplex stainless steel on migration of δ/γ interface boundary and growth of austenite. J Alloy Compd 285(1-2):156–161

    Article  CAS  Google Scholar 

  11. Chen T, Yang J (2001) Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel. Mater Sci Eng A 311(1-2):28–41

    Article  Google Scholar 

  12. Ramirez A, Lippold J, Brandi S (2003) The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metall Mater Trans A 34(8):1575–1597

    Article  Google Scholar 

  13. Michalska J, Sozańska M (2006) Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel. Mater Charact 56(4-5):355–362

    Article  CAS  Google Scholar 

  14. Pohl M, Storz O, Glogowski T (2007) Effect of intermetallic precipitations on the properties of duplex stainless steel. Mater Charact 58(1):65–71

    Article  CAS  Google Scholar 

  15. Sieurin H, Sandström R (2007) Sigma phase precipitation in duplex stainless steel 2205. Mater Sci Eng A 444(1-2):271–276

    Article  CAS  Google Scholar 

  16. Ghosh S, Mondal S (2008) High temperature ageing behaviour of a duplex stainless steel. Mater Charact 59(12):1776–1783

    Article  CAS  Google Scholar 

  17. Souza CM, Abreu HFG, Tavares SSM, Rebello JMA (2008) The σ phase formation in annealed UNS S31803 duplex stainless steel: texture aspects. Mater Charact 59(9):1301–1306

    Article  CAS  Google Scholar 

  18. Martins M, Casteletti LC (2009) Sigma phase morphologies in cast and aged super duplex stainless steel. Mater Charact 60(8):792–795

    Article  CAS  Google Scholar 

  19. Cho H-S, Lee K (2013) Effect of cold working and isothermal aging on the precipitation of sigma phase in 2205 duplex stainless steel. Mater Charact 75:29–34

    Article  CAS  Google Scholar 

  20. Zhang B, Jiang Z, Li H, Zhang S, Feng H, Li H (2017) Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature. Mater Charact 129:31–39

    Article  CAS  Google Scholar 

  21. Adhe KM, Kain V, Madangopal K, Gadiyar HS (1996) Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel. J Mater Eng Perform 5(4):500–506

    Article  CAS  Google Scholar 

  22. Wilms ME, Gadgil VJ, Krougman JM, Kolster BH (1991) The effect of σ-phase precipitation at 800° C on the mechanical properties of a high alloyed duplex stainless steel. Mater High Temp 9(3):160–166

    Article  CAS  Google Scholar 

  23. Nilsson JO, Wilson A (1993) Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507. Mater Sci Tech 9(7):545–554

    Article  CAS  Google Scholar 

  24. El Koussy M, El Mahallawi I, Khalifa W, Al Dawood M, Bueckins M (2004) Effects of thermal aging on microstructure and mechanical properties of duplex stainless steel weldments. Mater Sci Tech 20(3):375–381

    Article  Google Scholar 

  25. Wilms ME, Gadgil VJ, Krougman JM, Ijsseling FP (1994) The effect of σ-phase precipitation at 800° C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel. Corros Sci 36(5):871–881

    Article  CAS  Google Scholar 

  26. Ravindranath K, Malhotra SN (1995) The influence of aging on the intergranular corrosion of 22 chromium-5 nickel duplex stainless steel. Corros Sci 37(1):121–132

    Article  CAS  Google Scholar 

  27. Magnabosco R, Alonso-Falleiros N (2005) Pit morphology and its relation to microstructure of 850 C aged duplex stainless steel. Corrosion 61(2):130–136

    Article  CAS  Google Scholar 

  28. Kashiwar A, Vennela NP, Kamath SL, Khatirkar RK (2012) Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel. Mater Charact 74:55–63

    Article  CAS  Google Scholar 

  29. Badji R, Bouabdallah M, Bacroix B, Kahloun C, Bettahar K, Kherrouba N (2008) Effect of solution treatment temperature on the precipitation kinetic of σ-phase in 2205 duplex stainless steel welds. Mater Sci Eng A 496(1-2):447–454

    Article  CAS  Google Scholar 

  30. Ravindranath K, Malhotra SN (1994) Influence of aging on intergranular corrosion of a 25% chromium-5% nickel duplex stainless steel. Corrosion 50(4):318–328

    Article  CAS  Google Scholar 

  31. Gong J, Jiang YM, Deng B, Xu JL, Hu JP, Li J (2010) Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation method. Electrochim Acta 55(18):5077–5083

    Article  CAS  Google Scholar 

  32. Hong J, Han D, Tan H, Li J, Jiang Y (2013) Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion by optimized double loop electrochemical potentiokinetic reactivation method. Corros Sci 68:249–255

    Article  CAS  Google Scholar 

  33. Deng B, Wang Z, Jiang Y, Wang H, Gao J, Li J (2009) Evaluation of localized corrosion in duplex stainless steel aged at 850°C with critical pitting temperature measurement. Electrochim Acta 54(10):2790–2794

    Article  CAS  Google Scholar 

  34. Ebrahimi N, Momeni M, Moayed MH, Davoodi A (2011) Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel. Corros Sci 53(2):637–644

    Article  CAS  Google Scholar 

  35. Deng B, Wang Z, Jiang Y, Sun T, Xu J, Li J (2009) Effect of thermal cycles on the corrosion and mechanical properties of UNS S31803 duplex stainless steel. Corros Sci 51(12):2969–2975

    Article  CAS  Google Scholar 

  36. Peng W, Wu Z, Xu Y, Ran Q, Xu W, Li J, Xiao X (2017) Internal oxidation behaviour of Fe-Mn-Al-C duplex light-weight steels with good combination of strength and ductility. Corros Sci 120:148–157

    Article  CAS  Google Scholar 

  37. Zhang Z, Zhao H, Zhang H, Yu Z, Hu J, He L, Li J (2015) Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection. Corros Sci 93:120–125

    Article  CAS  Google Scholar 

  38. Ortiz N, Curiel FF, López VH, Ruiz A (2013) Evaluation of the intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with thermoelectric power measurements. Corros Sci 69:236–244

    Article  CAS  Google Scholar 

  39. Maehara Y, Ohmori Y, Murayama J, Fujino N, Kunitake T (1983) Effects of alloying elements on σ phase precipitation in δ–γ duplex phase stainless steels. Metal Sci 17(11):541–548

    Article  CAS  Google Scholar 

  40. Calliari I, Zanesco M, Ramous E (2006) Influence of isothermal aging on secondary phases precipitation and toughness of a duplex stainless steel SAF 2205. J Mater Sci 41(22):7643–7649

    Article  CAS  Google Scholar 

  41. Duprez L, De Cooman B, Akdut N (2000) Microstructure evolution during isothermal annealing of a standard duplex stainless steel type 1.4462. Steel Res 71(10):417–422

    Article  CAS  Google Scholar 

  42. Duprez L, De Cooman BC, Akdut N (2001) Redistribution of the substitutional elements during σ and χ phase formation in a duplex stainless steel. Steel Res 72(8):311–316

    Article  CAS  Google Scholar 

  43. Palumbo G, King PJ, Aust KT (1987) Pitting corrosion behavior of alloy 800 in chloride-sulfate media. Corrosion 43(1):37–45

    Article  CAS  Google Scholar 

  44. Bellezze T, Roventi G, Fratesi R (2004) Electrochemical characterization of three corrosion-resistant alloys after processing for heating-element sheathing. Electrochim Acta 49(17-18):3005–3014

    Article  CAS  Google Scholar 

  45. Thompson NGS, B.C. (1992) Relationship between conventional pitting and protection potentials and a new, unique pitting potential. Corrosion 48(8):649–658

    Article  CAS  Google Scholar 

  46. Ebrahimi N, Moayed MH, Davoodi A (2011) Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium. Corros Sci 53(4):1278–1287

    Article  CAS  Google Scholar 

  47. Sathirachinda N, Pettersson R, Wessman S, Pan J (2010) Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS. Corros Sci 52(1):179–186

    Article  CAS  Google Scholar 

  48. Ahn Y, Kang J (2000) Effect of aging treatments on microstructure and impact properties of tungsten substituted 2205 duplex stainless steel. Mater Sci Tech 16(4):382–388

    Article  CAS  Google Scholar 

  49. Chen T, Weng K, Yang J (2002) The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater Sci Eng A 338(1-2):259–270

    Article  Google Scholar 

  50. Calliari I, Brunelli K, Dabalà M, Ramous E (2009) Measuring secondary phases in duplex stainless steels. JOM 61(1):80–83

    Article  CAS  Google Scholar 

  51. Dos Santos DC, Magnabosco R (2016) Kinetic study to predict sigma phase formation in duplex stainless steels. Metall Mater Trans A 47(4):1554–1565

    Article  CAS  Google Scholar 

  52. Morais LC, Magnabosco R (2017) Experimental investigations and DICTRA® simulation of sigma phase formation in a duplex stainless steel. Calphad 58:214–218

    Article  CAS  Google Scholar 

  53. Luo H, Dong CF, Li XG, Xiao K (2012) The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride. Electrochim Acta 64:211–220

    Article  CAS  Google Scholar 

  54. Lopez N, Cid M, Puiggali M (1999) Influence of o-phase on mechanical properties and corrosion resistance of duplex stainless steels. Corros Sci 41(8):1615–1631

    Article  CAS  Google Scholar 

  55. Eghbali F, Moayed MH, Davoodi A, Ebrahimi N (2011) Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1M NaCl at various molybdate concentrations. Corros Sci 53(1):513–522

    Article  CAS  Google Scholar 

  56. Aldykiewicz AJ, Isaacs HS (1998) Dissolution characteristics of duplex stainless steels in acidic environments. Corros Sci 40(10):1627–1646

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51571139 and U1960103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moucheng Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Yang, Y., Xu, R. et al. Pitting corrosion resistance of sensitized type 2205 duplex stainless steel in hot concentrated seawater. J Solid State Electrochem 23, 2793–2801 (2019). https://doi.org/10.1007/s10008-019-04372-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04372-9

Keywords

Navigation