Skip to main content
Log in

XPS and EIS studies to account for the passive behavior of the alloy Ti-6Al-4V in Hank’s solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The passivation mechanism of the film formed on the alloy Ti-6Al-4V was evaluated in Hank’s solution to infer the properties of this alloy as an implant material. Alloy passivation was found from electrochemical measurements and X-ray photoelectron spectroscopy (XPS) to strongly depend on the oxidation of Ti and Al, microstructural changes associated with the Al and V, and the formation of metallic hydroxides and oxyhydroxides that disrupt the TiO2 matrix. Experimental impedance diagrams were fitted using the point defect model (PDM, transfer function) to describe the passive character of the alloy. According to this analysis, the transport of oxygen and hydroxide defects across the film on the alloy surface determines the adsorption of oxygen from water dissociation and/or phosphate and the precipitation of calcium phosphate. Therefore, osseointegration of the alloy Ti-6Al-4V occurs across the entire surface and strongly depends on the defects present in the film, Al incorporation, the penetration of hydroxide ions (hydration), and oxygen adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57

  2. Ask M, Lausmaa J, Kasemo B (1989) Preparation and surface spectroscopy characterization of oxide film on Ti6Al4V. Appl Surf Sci 35:283–301

    Article  CAS  Google Scholar 

  3. Sodhi RNS, Weninger A, Davis JE, Sreenivas K (1991) X-ray photoelectron spectroscopy comparison of sputtered Ti, Ti6Al4V and passive bulk metals for use in cell culture techniques. J Vac Sci Technol A 9:1329–1333

    Article  CAS  Google Scholar 

  4. Okazaki Y, Tateishi T, Ito Y (1997) Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films. Mater Trans JIM 38:78–84

    Article  CAS  Google Scholar 

  5. Schmidt H, Schminke A, Schmiedgen M, Baretzky B (2001) Compound formation and abrasion resistance of ion-implanted Ti6Al4V. Acta Mater 49:487–495

    Article  CAS  Google Scholar 

  6. Feng B, Weng J, Yang BC, Qu SX, Zang XD (2003) Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24:4663–4670

    Article  CAS  Google Scholar 

  7. Zhu X, Chen J, Scheindeler L, Reichl R, Geis-Gerstorfer J (2004) Effects of topography and composition of titanium surface oxide on osteoblast responses. Biomaterials 25:4087–4103

    Article  CAS  Google Scholar 

  8. Einsenbarth E, Velten D, Müller M, Thull R, Breme J (2004) Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713

    Article  Google Scholar 

  9. Lavos-Valereto C, Wolynec S, Ramires I, Guastaldi C, Costa I (2004) Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti–6Al–7Nb alloy in Hank's solution. J Mater Sci Mater Med 15:55–59

    Article  CAS  Google Scholar 

  10. Leach JSL, Pearson BR (1998) Crystallization in anodic oxide films. Corros Sci 28:43–56

    Article  Google Scholar 

  11. Petersson U, Löberg JEL, Fredriksson AS, Ahlberg EK (2009) Semi-conducting properties of titanium dioxide surfaces on titanium implants. Biomaterials 30:4471–4479

    Article  CAS  Google Scholar 

  12. Tanaka Y, Nakai M, Akahori T, Niinomi M, Tsutsumi Y, Doi H, Hanawa T (2008) Characterization of air-formed surface oxide film on Ti–29Nb–13Ta–4.6Zr alloy surface using XPS and AES. Corros Sci 50:2111–2116

    Article  CAS  Google Scholar 

  13. Ban S, Maruno S (1993) Deposition of calcium phosphate on titanium by electrochemical process in simulated body fluid. Jpn J Appl Phys 32:L1577–L1580

  14. Takana Y, Kobayashi E, Hiromoto K, Asami H, Imai H, Hanawa T (2007) Calcium phosphate formation on titanium by low-voltage electrolytic treatments. J Mater Sci Mater Med 18:797–806

    Article  Google Scholar 

  15. Chao CY, Lin LF, Macdonald DD (1981) A point defect model for anodic passive films I. Film growth kinetics. J Electrochem Soc 128:1187–1193

  16. Chao CY, Lin LF, Macdonald DD (1981) A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J Electrochem Soc 128:1194–1198

  17. Macdonald DD (1992) The point defect model for the passive state. J Electrochem Soc 139:3434–3449

  18. Zhang L, Macdonald DD (1998) On the transport of point defects in passive films. Electrochim Acta 43:679–691

    Article  CAS  Google Scholar 

  19. Cabrera-Sierra R, Pech-Canul MA, González I (2006) The role of hydroxide in the electrochemical impedance response of passive films in corrosion environments. J Electrochem Soc 153:B101–B107

  20. Cabrera-Sierra R, Hallen JM, Vazquez-Arenas J, Vázquez G, González I (2010) EIS characterization of tantalum and niobium oxide films based on a modification of the point defect model. J Electroanal Chem 638:51–58

    Article  CAS  Google Scholar 

  21. Cabrera-Sierra R, Vazquez-Arenas J, Cardoso S, Luna-Sánchez RM, Trejo MA, Marín-Cruz J, Hallen JM (2011) Analysis of the formation of Ta2O5 passive films in acid media through mechanistic modeling. Electrochim Acta 56:8040–8047

    CAS  Google Scholar 

  22. Acevedo-Peña P, Vazquez-Arenas J, Cabrera-Sierra R, Lartundo-Rojas L, González I (2013) Ti anodization in alkaline electrolyte: the relationship between transport of defects, film hydration and composition. J Electrochem Soc 160:C277–C284

  23. Milošev I, Metikos-Hukovic M, Strehblow HH (2000) Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21:2103–2113

    Article  Google Scholar 

  24. Geetha M, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2:40–54

  25. Hanawa T, Asami K, Asaoka K (1997) Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J Biomed Mater Res Part B 40:530–538

    Article  Google Scholar 

  26. Macdonald DD, Urquidi-Macdonald M (1990) Theory of steady-state passive films. J Electrochem Soc 137:2395–2402

  27. Milošev I, Kosec T, Strehblow HH (2008) XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim Acta 53:3547–3558

  28. Rtimi S, Pulgarin C, Sanjines R, Nadtochenko V, Lavanchy JC, Kiwi J (2015) Preparation and mechanism of Cu-decorated TiO2-ZrO2 films showing accelerated bacterial inactivation. Appl Mater Interfaces 7:12832–12839

  29. Li M, Zhang S, Peng Y, Lv L, Pan B (2015) Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence. RSC Adv 5:7363–7369

    Article  CAS  Google Scholar 

  30. Macdonald DD, Smedley SI (1990) An electrochemical impedance analysis of passive films on nickel (111) in phosphate buffer solutions. Electrochim Acta 35:1949–1956

    Article  CAS  Google Scholar 

  31. Milošev I, Strehblow HH, Navinšek B, Metikoš-Huković M (1995) Electrochemical and thermal oxidation of TiN coatings studied by XPS. Surf Interface Anal 23:529–539

    Article  Google Scholar 

  32. Castro EB (1994) Analysis of the impedance response of passive iron. Electrochim Acta 39:2117–2123

    Article  CAS  Google Scholar 

  33. Zhu R, Nowierski C, Ding Z, Noël JJ, Shoesmith DW (2007) Insights into grain structures and their reactivity on grade-2 Ti alloy surfaces by scanning electrochemical microscopy. Chem Mater 19:2533–2543

Download references

Acknowledgements

This research was financially supported by SIP-IPN multidisciplinary project No. 2019-2011. M.P. Chávez acknowledges the scholarship granted by CONACyT (Mexico) to conduct her doctoral studies. JVA also thanks CONACyT for financial support, “Investigación Científica Básica” 2017‐2018 grant No. A1‐S‐21608.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Vazquez-Arenas or Román Cabrera-Sierra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Díaz, M.P., Luna-Sánchez, R.M., Vazquez-Arenas, J. et al. XPS and EIS studies to account for the passive behavior of the alloy Ti-6Al-4V in Hank’s solution. J Solid State Electrochem 23, 3187–3196 (2019). https://doi.org/10.1007/s10008-019-04368-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04368-5

Keywords

Navigation