Skip to main content

Advertisement

Log in

Calcium phosphate formation on titanium by low-voltage electrolytic treatments

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrochemical treatments are expected to be effective for the coating of calcium phosphate ceramics to a titanium substrate. In the present study, two types of chronoamperometry with a step potential and a cyclic wave potential at low voltage (up to 2.0 V) and low current density were performed in Hanks’ solution to modify the surface characteristics of titanium. Titanium oxide film formed by self-passivation, that formed as reconstructed film during electrochemical treatments, and a calcium phosphate layer precipitated through treatments were characterised by X-ray photoelectron spectroscopy. The thickness and compositions of the surface films and layers were quantified from the XPS results. Calcium phosphate formation during immersion in Hanks’ solution for 1.0 Ms was evaluated by scanning electron microscopy with energy-dispersive X-ray spectrometry. The results confirmed that the electrolytic treatments in this study were effective to accelerate calcium phosphate formation on titanium in Hanks’ solution in spite of their lower voltage than conventional methods. The results also suggested that the hydroxyl group in the surface oxide film might contribute to the formation of calcium phosphate. This technique is a promising process for the treatment of thin titanium materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. K. SHUKLA, R. BALASUBRAMANIAM and S. BHARGAVA, J. Alloys Compd. 389 (2005) 144

    Article  CAS  Google Scholar 

  2. E. EISENBARTH, D. VELTEN, M. MULLER, R. THULL and J. BREME, Biomaterials 25 (2004) 5705

    Article  CAS  Google Scholar 

  3. J. I. QAZI, B. MARQUARDT and H. J. RACK, JOM 56 (2004) 49

    CAS  Google Scholar 

  4. M. TAKAHASHI, E. KOBAYASHI, H. DOI, T. YONEYAMA and H. HAMANAKA, J. Jpn Inst. Metals 64 (2000) 1120

    CAS  Google Scholar 

  5. E. KOBAYASHI, H. DOI, T. YONEYAMA, H. HAMANAKA, I. R. GIBSON, S. M. BEST, J. C. SHELTON and W. BONFIELD, J. Mater. Sci. Mater. Med. 9 (1998) 625

    Article  CAS  Google Scholar 

  6. T. KITSUGI, T. NAKAMURA, M. OKA, Y. SENAHA, T. GOTO and T. SHIBUYA, J. Biomed. Mater. Res. 30 (1996) 261

    Article  CAS  Google Scholar 

  7. V. A. DUBOK, Powder Metall. Met. Ceram. 39 (2000) 381

  8. L. M. SUN, C. C. BERNDT, K. A. GROSS and A. KUCUK, J. Biomed. Mater. Res. 58 (2001) 570

    Article  CAS  Google Scholar 

  9. W. J. A. DHERT, Med. Prog. Technol. 20 (1994) 143

    CAS  Google Scholar 

  10. M. FINI, A. CIGADA, G. RONDELLI, R. CHIESA, R. GIARDINO, G. GIAVARESI, N. N. ALDINI, P. TORRICELLI and B. VICENTINI, Biomaterials 20 (1999) 1587

    Article  CAS  Google Scholar 

  11. M. YOSHINARI, Y. OHTSUKA and T. DERAND, Biomaterials 15 (1994) 529

    Article  CAS  Google Scholar 

  12. T. HANAWA, Y. NODASAKA, H. UKAI, K. MURAKAMI and K. ASAOKA, J. Jpn Soc. Biomater. 12 (1994) 209

    CAS  Google Scholar 

  13. T. HANAWA, Y. KAMIURA, S. YAMAMOTO, T. KOHGO, A. AMEMIYA, H. UKAI, K. MURAKAMI and K. ASAOKA, J. Biomed. Mater. Res. 36 (1997) 131

    Article  CAS  Google Scholar 

  14. S. BAN and S. MARUNO, Biomaterials 19 (1998) 1245

    Article  CAS  Google Scholar 

  15. S. BAN and J. HASEGAWA, Biomaterials 23 (2002) 2965

    Article  CAS  Google Scholar 

  16. X. L. ZHU, K. H. KIM and Y. S. JEONG, Biomaterials 22 (2001) 2199

    Article  CAS  Google Scholar 

  17. K. KURODA, Y. MIYASHITA, R. ICHINO and M. OKIDO, Mater. Sci. Forum 426–4 (2003) 3189

    Article  Google Scholar 

  18. C. K. YOU, X. W. MENG, T. Y. KWON, Y. Z. YANG, J. L. ONG, S. KIM and K. H. KIM, Bioceramics 17 (2005) 901

    Google Scholar 

  19. T. HANAWA, K. ASAMI and K. ASAOKA, J. Biomed. Mater. Res. 40 (1998) 530

    Article  CAS  Google Scholar 

  20. K. ASAMI, J. Electr. Spectrosc. 9 (1976) 469

    Article  CAS  Google Scholar 

  21. K. ASAMI, K. HASHIMOTO and S. SHIMODAIRA, Corros. Sci. 17 (1977) 713

    Article  CAS  Google Scholar 

  22. K. ASAMI, S. C. CHEN, H. HABAZAKI and K. HASHIMOTO, Corros. Sci. 35 (1993) 43

    Article  CAS  Google Scholar 

  23. T. HANAWA and M. OTA, Biomaterials 12 (1991) 767

    Article  CAS  Google Scholar 

  24. T. HANAWA and M. OTA, Appl. Surf. Sci. 55 (1992) 269

    Article  CAS  Google Scholar 

  25. K. ASAMI and K. HASHIMOTO, Corros. Sci. 17 (1977) 559

    Article  CAS  Google Scholar 

  26. S. BAN and S. MARUNO, Jpn J. Appl. Phys. 32 (1993) L1577

    Article  CAS  Google Scholar 

  27. K. E. HEALY and P. DUCHEYNE, J. Biomed. Mater. Res. 26 (1992) 319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y., Kobayashi, E., Hiromoto, S. et al. Calcium phosphate formation on titanium by low-voltage electrolytic treatments. J Mater Sci: Mater Med 18, 797–806 (2007). https://doi.org/10.1007/s10856-006-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0004-2

Keywords

Navigation