Skip to main content
Log in

The discrete Chebyshev algorithm for nonparametric estimation of autocorrelation function of electrochemical random time series

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The discrete Chebyshev algorithm for nonparametric estimation of autocorrelation function of electrochemical random time series is presented. The algorithm is resistant to a trend of electrochemical noise. The discrete Chebyshev algorithm is tested using the model electrochemical noise corresponding to the equilibrium two-element Voigt circuit. The algorithm is used for nonparametric estimation of autocorrelation function of corrosion noise and electronic noise of measuring instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yaglom AM (1962) Introduction to theory of stationary random functions. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  2. Hayes MH (1996) Statistical digital signal processing and modeling. Wiley

  3. Stoica P, Moses R (2005) Spectral analysis of signals. Prentice Hall

    Google Scholar 

  4. Naidu PS (1996) Modern spectrum analysis of time series. CRC Press, Boca Raton

    Google Scholar 

  5. Timashev SF, Polyakov YS (2007) Review of flicker noise spectroscopy in electrochemistry. Fluct Noise Lett 7(2):R15–R47

    Article  Google Scholar 

  6. Shumway RH, Stoffer DS (2017) Time series analysis. Free Dog Publishing

  7. MacDonald DKC (1962) Noise and fluctuations: an introduction. Wiley, New York

    Google Scholar 

  8. Bendat JS, Piersol AG (1972) Random data: analysis and measurement procedures. Wiley, New York

    Google Scholar 

  9. Kuznetsov AM, Ulstrup J (1999) Electron transfer in chemistry and biology. An introduction to the theory. Wiley, Chichester

    Google Scholar 

  10. Grafov B, Klyuev A, Davydov A, Lukovtsev V (2017) Chebyshev’s noise spectroscopy for testing electrochemical systems. Bulg Chem Commun 49:102–105

    Google Scholar 

  11. Klyuev AL, Grafov BM, Davydov AD, Lukovtsev VP, Petrenko EM (2019) Analysis of discrete spectra of electrochemical noise of lithium power sources. J Solid State Electrochem 23(2):497–502

    Article  CAS  Google Scholar 

  12. Astafev EA (2019) Electrochemical noise of a Li-ion battery: measurement and spectral analysis. J Solid State Electrochem 23(4):1145–1153

    Article  CAS  Google Scholar 

  13. Astafev EA, Ukshe AE, Dobrovolsky YA (2018) The model of electrochemical noise of a hydrogen-air fuel cell. J Electrochem Soc 165(9):F604–F612

    Article  CAS  Google Scholar 

  14. Astafev EA, Ukshe AE, Gerasimova EV, Dobrovolsky YA, Manzhos RA (2018) Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads. J Solid State Electrochem 22(6):1839–1849

    Article  CAS  Google Scholar 

  15. Maizia R, Dib A, Thomas A, Martemianov S (2018) Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell. J Solid State Electrochem 22(6):1649–1660

    Article  CAS  Google Scholar 

  16. Astafev EA (2018) Frequency characteristics of hydrogen-air fuel cell electrochemical noise. Fuel Cells 8:755–762

    Article  CAS  Google Scholar 

  17. Astafev EA (2018) Electrochemical noise measurement of a Li/SOCl2 primary battery. J Solid State Electrochem 22(11):3569–3577

    Article  CAS  Google Scholar 

  18. Cottis RA (2001) Interpretation of electrochemical noise date. Corrosion 57(3):265–285

    Article  CAS  Google Scholar 

  19. Huet F (2006) Electrochemical noise technique. In: Marcus P, Mansfeld F (eds) Analytical methods in corrosion science and engineering. CRC Press, p 508

  20. Kearns JR, Scully JR, Roberge PR, Reichert DL, Dawson JL (eds) (1996) Electrochemical noise measurement for corrosion applications. ASTM PCN 04-012770-27, Philadelphia, PA

  21. Kelly RG, Scully JR, Shoesmith DW, Buchheit RG (2003) Electrochemical techniques in corrosion science and engineering. Marcel Dekker, New York

    Google Scholar 

  22. Searson PC, Dawson JL (1988) Analysis of electrochemical noise generated by corroding electrodes under open-circuit conditions. J Electrochem Soc 135(8):1908–1915

    Article  CAS  Google Scholar 

  23. Mansfeld F, Sun Z, Hsu CH, Nagiub A (2001) Concerning trend removal in electrochemical noise measurements. Corros Sci 43(2):341–352

    Article  CAS  Google Scholar 

  24. Bertocci U, Huet F, Nogueira RP, Rousseau P (2002) Drift removal procedures in the analysis of electrochemical noise. Corrosion 58(4):337–347

    Article  CAS  Google Scholar 

  25. Xia DH, Yashar B (2015) Electrochemical noise: a review of experimental setup, instrumentation and DC removal. Russ J Electrochem 51(7):593–601

    Article  CAS  Google Scholar 

  26. Lentka L, Smulko J (2019) Methods of trend removal in electrochemical noise data – overview. Measurement 131:569–581

    Article  Google Scholar 

  27. Homborg AM, Tinga T, Zhang X, van Westing EPM, Oonincx PJ, de Wit JHW, Mol JMC (2012) Time-frequency methods for trend removal in electrochemical noise data. Electrochim Acta 70:199–209

    Article  CAS  Google Scholar 

  28. Astafev EA, Ukshe AE, Leonova LS, Manzhos RA, Yu.A. Dobrovolsky YuA (2018) Detrending and other features of data processing in the measurements of electrochemical noise. Russ J Electrochem 54:1117–1125, 12

  29. Astaf’ev MG, Kanevskii LS, Grafov BM (2007) Analyzing electrochemical noise with Chebyshev’s discrete polynomials. Russ J Electrochem 43(1):17–24

    Article  CAS  Google Scholar 

  30. Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE, Klyuev AL, Astaf’ev EA (2015) Electrochemical noise diagnostics: analysis of algorithm of orthogonal expansions. Russ J Electrochem 51(6):503–507

    Article  CAS  Google Scholar 

  31. Grafov BM, Dobrovolskii YA, Klyuev AL, Ukshe AE, Davydov AD, Astaf’ev EA (2017) Median Chebyshev spectroscopy of electrochemical noise. J Solid State Electrochem 21(3):915–918

    Article  CAS  Google Scholar 

  32. Nikiforov AV, Suslov SK, Uvarov VB (1991) Classical orthogonal polynomials of a discrete variable, Springer

  33. Gogin N, Hirvensalo M (2007) Recurrent construction of MacWilliams and Chebyshev matrices. Turku Centre for Computer Science, Technical Report No.812

  34. Grafov BM, Klyuev AL, Kabanova TB, Davydov AD (2018) Chebyshev spectra resistance to trend of random noise. Fluct Noise Lett 17(03):1850028

    Article  Google Scholar 

  35. Vasegni SV (2000) Advanced digital signal processing and noise reduction, Wiley

  36. Proakis JG, Manolakis DG (2006) Digital signal processing. Principles, algorithms, and applications. Prentice Hall

  37. Grafov BM, Klyuev AL, Davydov AD (2018) Discrete version of Wiener—Khinchin theorem for Chebyshev’s spectrum of electrochemical noise. J Solid State Electrochem 22(6):1661–1667

    Article  CAS  Google Scholar 

  38. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer

  39. Orazem ME, Tribollet B (2017) Electrochemical impedance spectroscopy, Wiley

  40. Nyquist H (1928) Thermal agitation of electricity in conductors. Phys Rev 32(1):110–113

    Article  CAS  Google Scholar 

  41. Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83(1):34–40

    Article  Google Scholar 

  42. Zheng C (2014) On generalized auto-spectral coherence function and its applications to signal detection. IEEE Signal Proc Let 21(5):559–563

    Article  Google Scholar 

  43. Bosch RW, Cottis RA, Csecs K, Dorsch T, Dunbar L, Heyn A, Huet F, Hyokyvirta O, Kerner Z, Kobzova A, Macak J, Novotny R, Oijerholm J, Piipo J, Richner R, Ritter S, Sanchez-Amaya JM, Somogyi A, Vaisanen S, Zhang W (2014) Reliability of electrochemical noise measurement: results of round-robin testing on electrochemical noise. Electrochim Acta 120:379–389

    Article  CAS  Google Scholar 

  44. Goncharova OA, Luchkin AY, Kuznetsov YI, Andreev NN, Andreeva NP, Vesely SS (2018) Octadecylamine, 1,2,3-benzotriazole and a mixture thereof as chamber inhibitors of steel corrosion. Int J Corros Scale Inhib 7:203–212

    CAS  Google Scholar 

  45. Kim YS, Kim JG (2017) Electrochemical and quantum chemical studies of 1, 2, 3-benzotriazole as inhibitor for copper and steel in simulated tap water. Mater Trans 58(1):76–84

    Article  CAS  Google Scholar 

  46. Solehudin A, Nurdin I (2014) Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS). In: 4th International Conference on Mathematics and Natural Sciences (Icmns), London: Science for Health, Food and Sustainable Energy, Series: AIP Conf Proc 1589:164–168

Download references

Funding

The work was performed with support of Ministry of Science and Higher Education of Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Grafov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyuev, A.L., Davydov, A.D. & Grafov, B.M. The discrete Chebyshev algorithm for nonparametric estimation of autocorrelation function of electrochemical random time series. J Solid State Electrochem 23, 2325–2330 (2019). https://doi.org/10.1007/s10008-019-04349-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04349-8

Keywords

Navigation