Skip to main content

Advertisement

Log in

Electrospun tin-carbon nanocomposite as anode material for all solid state lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

All-solid-state batteries represent the next generation of electrochemical energy storage systems. A tin-carbon nanocomposite material is prepared by the electrospinning technique and employed as candidate anode material in such devices. The as-prepared material has been structurally and morphologically characterized. The electrochemical characterization of the Sn(nano)/C composite showed also good electrochemical reversibility, and stability upon 100 galvanostatic cycle experiments with a quite stable interface, as highlighted by impedance spectroscopy experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  2. Wen J, Yu Y, Chen C (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2(3):197–212

    Article  CAS  Google Scholar 

  3. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  4. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  CAS  Google Scholar 

  5. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    Article  CAS  Google Scholar 

  6. Li F, Kitaura H, Zhou H (2013) The pursuit of rechargeable solid-state Li-air batteries. Energy Environ Sci 6(8):2302–2311

    Article  CAS  Google Scholar 

  7. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

    Article  CAS  Google Scholar 

  8. Stramare S, Weppner W (1999) Structural and conductivity investigations of doped Li-titanates. Ionics (Kiel) 5(5-6):405–409

    Article  CAS  Google Scholar 

  9. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180(14-16):911–916

    Article  CAS  Google Scholar 

  10. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727

    Article  CAS  PubMed  Google Scholar 

  11. Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K (2013) Suppression of H2S gas generation from the 75Li 2S·25P2S5 glass electrolyte by additives. J Mater Sci 48(11):4137–4142

    Article  CAS  Google Scholar 

  12. Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182(1):116–119

    Article  CAS  Google Scholar 

  13. Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K (2013) Glass electrolytes with high ion conductivity and high chemical stability in the system LiI-Li2O-Li2S-P2S5. Electrochemistry 81(6):428–431

    Article  CAS  Google Scholar 

  14. Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan CW (2015) Oxide electrolytes for lithium batteries. J Am Ceram Soc 98(12):3603–3623

    Article  CAS  Google Scholar 

  15. Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough JB (2016) Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci 113(47):13313–13317

    Article  CAS  PubMed  Google Scholar 

  16. Nazri GA, Pistoia G (2003) Lithium batteries - science and technology. Springer US, Boston

    Book  Google Scholar 

  17. Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

    Article  CAS  Google Scholar 

  18. Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502

    Article  CAS  PubMed  Google Scholar 

  19. Gaberscek M, Dominko R, Jamnik J (2007) Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem Commun 9(12):2778–2783

    Article  CAS  Google Scholar 

  20. Wang C, Fang D, Wang H et al (2016) Uniform nickel vanadate (Ni3V2O8) nanowire arrays organized by ultrathin nanosheets with enhanced lithium storage properties. Sci Rep 6(1):20826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui LF, Yang Y, Hsu CM, Cui Y (2009) Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9(9):3370–3374

    Article  CAS  PubMed  Google Scholar 

  22. Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham TK, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6(10):2900

    Article  CAS  Google Scholar 

  23. Li X, Zhang Y, Li T, Zhong Q, Li H, Huang J (2014) Carbon encapsulated ultrasmall SnO2 nanoparticles anchoring on graphene/TiO2 nanoscrolls for lithium storage. Electrochim Acta 147:40–46

    Article  CAS  Google Scholar 

  24. Liu H, Chen S, Wang G, Qiao SZ (2013) Ordered mesoporous core/shell SnO2/C nanocomposite as high-capacity anode material for lithium-ion batteries. Chem - A Eur J 19(50):16897–16901

    Article  CAS  Google Scholar 

  25. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50(8):1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ban C, Chernova NA, Whittingham MS (2009) Electrospun nano-vanadium pentoxide cathode. Electrochem Commun 11(3):522–525

    Article  CAS  Google Scholar 

  27. Teh PF, Pramana SS, Sharma Y, Ko YW, Madhavi S (2013) Electrospun Zn1- xMnxFe2O4 nanofibers as anodes for lithium-ion batteries and the impact of mixed transition metallic oxides on battery performance. ACS Appl Mater Interfaces 5(12):5461–5467

    Article  CAS  PubMed  Google Scholar 

  28. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10(11):4750–4755

    Article  CAS  PubMed  Google Scholar 

  29. Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F (2013) High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources 226:241–248

    Article  CAS  Google Scholar 

  30. Gergin I, Ismar E, Sarac AS (2017) Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study. Beilstein J Nanotechnol 8:1616–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alarifi IM, Khan WS, Asmatulu R (2018) Synthesis of electrospun polyacrylonitrile-derived carbon fibers and comparison of properties with bulk form. PLoS One 13:1–14

    Article  CAS  Google Scholar 

  32. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246

    Article  CAS  PubMed  Google Scholar 

  33. Birrozzi A, Raccichini R, Nobili F, Marinaro M, Tossici R, Marassi R (2014) High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries. Electrochim Acta 137:228–234

    Article  CAS  Google Scholar 

  34. Lian P, Wang J, Cai D, Ding L, Jia Q, Wang H (2014) Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim Acta 116:103–110

    Article  CAS  Google Scholar 

  35. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science (80- ) 270(5236):590–593

    Article  CAS  Google Scholar 

  36. Zheng T, Xue JS, Dahn JR (1996) Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater 8(2):389–393

    Article  CAS  Google Scholar 

  37. Aihara Y, Ito S, Omoda R et al (2016) The electrochemical characteristics and applicability of an amorphous sulfide-based solid ion conductor for the next-generation solid-state lithium secondary batteries. Front Energy Res 4:1–8

    Article  Google Scholar 

  38. Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20(1):31–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out within a joint research project between the University of Chieti and Samsung SRJ at Minoh-Shi, Japan. The author wants to thank Dr. Gabriele Giuli for the XRD patterns, Dr. Laura Petetta for the SEM micrographs, and Dr. Matteo Ciambezi at the University of Camerino for the Raman Spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Croce.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroni, F., Bruni, P., Suzuki, N. et al. Electrospun tin-carbon nanocomposite as anode material for all solid state lithium-ion batteries. J Solid State Electrochem 23, 1697–1703 (2019). https://doi.org/10.1007/s10008-019-04275-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04275-9

Keywords

Navigation