Skip to main content
Log in

Determination of thermodynamic properties of the ternary oxides in the Y-Ru-O system by electromotive force measurements and differential scanning calorimetric measurements

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the standard molar Gibbs energy of formation of Y2Ru2O7(s) and Y3RuO7(s) was determined using calcia-stabilized zirconia (CSZ) as an electrolyte and air as a reference electrode. The cells can be represented by: (−)Pt/{Y2O3(s) + Y2Ru2O7(s) + Ru(s)}//CSZ//O2(p(O2) = 21.21 kPa)/Pt(+), (−)Pt/{Y3RuO7(s) + Y2Ru2O7(s) + Y2O3(s)}//CSZ//O2(p(O2) = 21.21kPa)/Pt(+). The electromotive force was measured in the temperature range from 981 to 1155 K and 932 to 1186 K, respectively. The standard molar Gibbs energy of formation of Y2Ru2O7(s) and Y3RuO7(s) from elements in their standard state was calculated by the least squares regression analysis of the data obtained in the present study and can be given, respectively, by: {ΔfG(Y2Ru2O7, s)/(kJmol−1) ± 2.22} =  − 2554.1 + 0.625 ⋅ (T/K) and {ΔfG(Y3RuO7, s)/(kJmol−1) ± 2.45} =  − 3249.5 + 0.635 ⋅ (T/K). The standard molar heat capacity Cop,m(T) of Y2Ru2O7(s) was measured using a heat flux–type differential scanning calorimeter (DSC) in the temperature range, from 307 to 780 K. The heat capacity was fitted into a mathematical expression and can be represented by: Cp, m(Y2Ru2O7, s, T)(JK−1mol−1) = 256.1 + 5.88 ∙ 10−2T(K) − 34.75 ∙ 105/T2(K). (307 ≤ T (K) ≤ 780). The heat capacity of Y2Ru2O7(s) was used along with the data obtained from the electrochemical cell to determine its decomposition temperature and stability in air and to calculate other thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wiss F, Raju NP, Wills AS, Greedan JE (2000) Structure and magnetism in Pr3RuO7. Int J Inorg Mater 2:53–59

    Article  CAS  Google Scholar 

  2. Greedan JE (2001) Geometrically frustrated magnetic materials. J Mater Chem 11:37–53

    Article  CAS  Google Scholar 

  3. Cao G, McCall S, Crow JE, Guertin RP (1997) Magnetic ordering and enhanced electronic heat capacity in insulating. Phys Rev Lett 78:1751–1754

    Article  CAS  Google Scholar 

  4. Rard JA (1985) Chemistry and thermodynamics of ruthenium and some of its inorganic compounds and aqueous species. Chem Rev 85:1–39

    Article  CAS  Google Scholar 

  5. Cava RJ (2004) Schizophrenic electrons in ruthenium-based oxides. Dalton Trans 10:2979–2987

    Article  CAS  Google Scholar 

  6. Greedan JE, Sato M, Ali N, Datars WR (1987) Electrical resistivity of pyrochlore compounds R2Mo2O7 (R = Nd, Sm, Gd, Tb, Y). J Solid State Chem 68:300–306

    Article  CAS  Google Scholar 

  7. Nishimine H, Wakeshima M, Hinatsu Y (2005) Structures, magnetic and thermal properties of Ln3MoO7 (Ln=La, Pr, Nd,Sm,Eu). J Solid State Chem 178:1221–1229

    Article  CAS  Google Scholar 

  8. van Berkel FPF, Ijdo DJW (1986) The orthorhombic fluorite related compounds Ln3RuO7 Ln=Nd, Sm and Eu. Mater Res Bull 21:1103–1106

    Article  Google Scholar 

  9. Rossell HJ (1979) Fluorite-related phases Ln3MO7, Ln = rare earth, Y or Sc, M = Nb, Sb, or Ta. J Solid State Chem 27:115–122

    Article  CAS  Google Scholar 

  10. Harada D, Hinatsu Y (2002) Magnetic and calorimetric studies on one dimensional Ln3RuO7(Ln=Pr,Gd). J Solid State Chem 164:163–168

    Article  CAS  Google Scholar 

  11. Harada D, Hinatsu Y (2001) A study of the magnetic and thermal properties of Ln3RuO7 (Ln=Sm,Eu). J Solid State Chem 158:245–253

    Article  CAS  Google Scholar 

  12. Lam R, Wiss F, Greedan JE (2002) Magnetic properties of the fluorite related La3MoO7 phases M=Ru and Os. J Solid State Chem 167:182–187

    Article  CAS  Google Scholar 

  13. Cruickshank KM, Glasser FP (1994) Rare earth platinum group mixed metal oxide systems. J Alloys Comp 210:177–184

    Article  CAS  Google Scholar 

  14. Kobayashi H, Kanno R, Kawamoto Y, Kamiyama T, Izumi F, Sleight AW (1995) Synthesis, crystal structure, and electrical properties of the pyrochlores Pb2-x LnxRu2O7-y(Ln = Nd, Gd). J Solid State Chem 114:15–23

    Article  CAS  Google Scholar 

  15. Blacklock K, White HW, Gurmen E (1980) Specific heats of the pyrochlore compounds Y2Mo2O7 and Y2Ru2O7. J Chem Phys 73:19661969

    Article  Google Scholar 

  16. Taira N, Wakeshima M, Hinatsu Y (1999) Magnetic properties of ruthenium pyrochlores Y2Ru2O7 and Lu2Ru2O7. J Solid State Chem 144:216–219

    Article  CAS  Google Scholar 

  17. Lee YS, Lee JS, Kim KW, Noh TW, Yu J, Takeda Y, Kanno R (2001) Optical investigation of A(2)Ru(2)O(7) (A = Y, Tl, and Bi): temperature dependent selfdoping effects. Physica C 364:632–635

    Article  Google Scholar 

  18. Parrondo J, Morgan G, Capuano C, Ayersb KE, Raman V (2015) Pyrochlore electrocatalysts for efficient alkaline water electrolysis. J Mater Chem A 3:10819–10827

    Article  CAS  Google Scholar 

  19. Park J, Park M, Nam G, Kim MG, Cho J (2017) Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn-Air Batteries. Nano Lett 17:3974–3981

    Article  CAS  PubMed  Google Scholar 

  20. Kim J, Shih PC, Tsao KC, Pan YT, Yin X, Sun CJ, Yang H (2017) High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J Am Chem Soc 139:12076–12083

    Article  CAS  PubMed  Google Scholar 

  21. Shin JM, Park JJ, Shin SW, Kim KY (2005) Effectiveness of yttria filters for the removal of volatile ruthenium at high temperatures. Key Eng Mater 277:470–474

    Article  Google Scholar 

  22. Kleykamp H (1988) The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle. Nucl Tech 80:412–422

    Article  CAS  Google Scholar 

  23. Kanno R, Takeda Y, Yamamoto T, Kawamoto Y, Yamamoto O (1993) Crystal structure and electrical properties of the pyrochlore ruthenate Bi2-xYxRu2O7. J Solid State Chem 102:106–114

    Article  CAS  Google Scholar 

  24. Banerjee A, Singh Z, Venugopal V (2009) Heat capacity and Gibbs energy of formation of the ternary oxide CdRh2O4(s). J Solid State Ionics 180:1337–1341

    Article  CAS  Google Scholar 

  25. Pratt JN (1990) Applications of solid electrolytes in thermodynamic studies of materials: a review. Metall Trans A 21:1223–1250

    Article  Google Scholar 

  26. Banerjee A, Singh Z (2009) System Zn–Rh–O: Heat capacity and Gibbs free energy of formation using differential scanning calorimeter and electrochemical cell. J Solid State Electrochem 13:1201–1207

    Article  CAS  Google Scholar 

  27. Sabbah R, Xu-wu AX, Chickos JS, Planas Leitao ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–204

    Article  CAS  Google Scholar 

  28. Hohne GWH, Hemminger WF, Flammershein HJ (2003) Differential scanning calorimetry, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  29. ASTD, Ver. 2.0, G. V. Belov, B. G. Trusov, 1983-1995, Moscow

  30. Chase MW, Jr. JANAF Thermochemical Tables, Fourth edn., J Phys Chem, (monograph no. 91995)

  31. Kubachewski O, Alcock CB, Spencer PJ (1993) Materials Thermochemistry, 6th. edn. Pergamon, Oxford

  32. Leitner J, Vonka P, Sedmidubsky D, Svoboda P (2010) Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim Acta 487:7–13

    Article  CAS  Google Scholar 

  33. Grimvall G (1999) Thermophysical properties of materials, Elsevier, 367-368

  34. Kmeic R, Swinkowska Z, Gurgul J, Rams M, Zarzycki A, Tomala K (2006) Investigation of the magnetic properties of Y2Ru2O7 by 99Ru Mössbauer spectroscopy. Phys Rev B 74:104425–104429

    Article  CAS  Google Scholar 

  35. Taira N, Wakeshima M, Hinatsu Y (2000) Specific heat and ac susceptibility studies on ruthenium pyrochlores R2Ru2O7 (R = Rare Earths). J Solid State Chem 152:441–446

    Article  CAS  Google Scholar 

  36. Graves K, Kirby KB, Rardin R (1991) FREED Version 2.1

  37. Cordfunke EHP, Konings RJM (1988) The enthalpy of formation of ruthenium dioxide. Thermochim Acta 129:63–69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Meera Keskar, from FCD, BARC, for the XRD analysis. The authors are thankful to Dr. S. Kannan Head, Fuel Chemistry Division, and Dr. P. K. Pujari, Associate Director, R C, and I Group BARC, Mumbai, for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Banerjee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A. Determination of thermodynamic properties of the ternary oxides in the Y-Ru-O system by electromotive force measurements and differential scanning calorimetric measurements. J Solid State Electrochem 23, 1749–1755 (2019). https://doi.org/10.1007/s10008-019-04268-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04268-8

Keywords

Navigation