Skip to main content
Log in

High-selectively determination of nitric oxide on nanoporous gold electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Here, a nanoporous gold electrode (NAu) was reported with a unique cone-shape nanohole structure for electrochemical sensing of nitric oxide (NO), which was fabricated via a facile sputtering technique on aluminum oxide membrane. Two kinds of nanoporous gold electrodes fabricated on different aluminum oxide membranes with aperture-size of 20 nm (2020NAu) and 200 nm (2040NAu) were obtained and compared in electrochemically active surface area and electro-oxidation activity. Concerning the determination of NO, it exhibited higher selectivity to NO2 and larger electro-oxidation current on 2020NAu electrode than those on 2040NAu electrode when their backsides were used as sensing interfaces. Meanwhile, the anti-interfering ability of bare 2020NAu electrode was also compared with that on Nafion-modified 2020NAu electrode. Results showed that common electroactive interferents such as H2O2, ascorbic acid, and uric acid could be hindered by cone-shape nanohole structure in the backside of 2020NAu electrode. On the basis of cyclic voltammetry, the linear range was from 4.75 × 10−8 to 9.50 × 10−7 M for NO sensing on 2020NAu electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li XK, Zhang YL, Chang YL, Xue B, Kong XG, Chen W (2017) Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles. Biosens Bioelectron 92:328–334

    Article  CAS  PubMed  Google Scholar 

  2. Viswambari Devi R, Doble M, Verma RS (2009) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 68:688–698

    Article  CAS  Google Scholar 

  3. Qu D, Liu F, Yu J, Xie W (2011) Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl Phys Lett 98:205–295

    Google Scholar 

  4. Thompson GE (1997) Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films 297:192–201

    Article  CAS  Google Scholar 

  5. Zhao JL, Wang XH, Sun TY, Li LT (2005) In situ templated synthesis of anatase single-crystal nanotube arrays. Nanotechnology 16:2450–2454

    Article  CAS  PubMed  Google Scholar 

  6. Li CJ, Guo YG, Li BS, Wang CR, Wan LJ, Bai CL (2005) Template synthesis of Sc@C82 (I) nanowires and nanotubes at room temperature. Adv Mater 17:71–73

    Article  CAS  Google Scholar 

  7. Lee W, Scholz R, Nielsch K, Gösele U (2005) A template-based electrochemical method for synthesis of multisegmented metallic nanotubes. Angew Chem Int Ed 44:6050–6054

    Article  CAS  Google Scholar 

  8. Han GC, Zong BY, Luo P, Wu YH (2003) Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays. J Appl Phys 93:9202–9207

    Article  CAS  Google Scholar 

  9. Li L, Yang YW, Huang XH, Li GH, Ang R, Zhang LD (2006) Fabrication and electric transport properties of Bi nanotube arrays. Appl Phys Lett 88:103119–103,121

    Article  CAS  Google Scholar 

  10. Li L, Pan S, Dou XC, Zhu YG, Huang XH, Yang YW, Li GH, Zhang LD (2007) Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes. J Phys Chem C 111:7288–7291

    Article  CAS  Google Scholar 

  11. Shimokawa H, Godo S (2016) Diverse functions of endothelial NO synthases system: NO and EDH. J Cardiovasc Pharmacol 67:361–368

    Article  CAS  PubMed  Google Scholar 

  12. Oladayo F, Mills KA, Sellers DJ, Russ CW (2016) Three gaseous neurotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide, are involved in the neurogenic relaxation responses of the porcine internal anal sphincter. J Neurogastroent MotiL 22:141–147

    Google Scholar 

  13. Zhang Z, Smith CJ, Li W, Ashworth J (2016) Characterization of nitric oxide modulatory activities of alkaline-extracted and enzymatic-modified arabinoxylans from corn bran in cultured human monocytes. J Agric Food Chem 43:64–68

    Google Scholar 

  14. Beckman JS, Chen J, Ischiropoulos H, Crow JP (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol 233:229–240

    Article  CAS  PubMed  Google Scholar 

  15. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci 89:444–448

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Li M, Wang B, Wang M, Kurash I (2016) Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells. Anal Bioanal Chem 408:5479–5488

    Article  CAS  PubMed  Google Scholar 

  17. Akaike T, Yoshida M, Miyamoto Y, Sato K, Kohno M, Sasamoto K, Miyazaki K, Ueda S, Maeda H (1993) Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/NO (nitric oxide) through a radical reaction. Biochemistry 32:827–832

    Article  CAS  PubMed  Google Scholar 

  18. Vélez RP, Ellmers I, Huang H, Bentrup U, Schünemann V (2014) Identifying active sites for fast NH3-SCR of NO/NO2 mixtures over Fe-ZSM-5 by operando EPR and UV–vis spectroscopy. J Catal 316:103–111

    Article  CAS  Google Scholar 

  19. Fang WX, Cui DW, Wang ZL (2011) Nitric oxide measurement in biological and pharmaceutical samples by an electrochemical sensor. J Solid State Electrochem 15:829–836

    Article  CAS  Google Scholar 

  20. Chen HM, Zhao GC (2012) Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing. J Solid State Electrochem 16:3289–3297

    Article  CAS  Google Scholar 

  21. Shibuki K (1990) An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 9:69–76

    Article  CAS  PubMed  Google Scholar 

  22. Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    Article  CAS  PubMed  Google Scholar 

  23. Wang YZ, Li CY, Hu S (2006) Electrocatalytic oxidation of nitric oxide at nano-TiO2/Nafion composite film modified glassy carbon electrode. J Solid State Electrochem 10:383–388

    Article  CAS  Google Scholar 

  24. Fei J, Hu SG, Shiu K (2011) Amperometric determination of nitric oxide at a carbon nanotube modified electrode with redox polymer coating. J Solid State Electrochem 15:519–523

    Article  CAS  Google Scholar 

  25. Maluta JR, Thiago C, Canevari C (2014) Sensitive determination of nitric oxide using an electrochemical sensor based on MWCNTs decorated with spherical Au nanoparticles. J Solid State Electrochem 18:2497–2504

    Article  CAS  Google Scholar 

  26. Chandra S, Mende C, Dhirendra Bahadur D, Hildebrandt A, Lang H (2015) Fabrication of a porphyrin-based electrochemical biosensor for detection of nitric oxide released by cancer cells. J Solid State Electrochem 19:169–177

    Article  CAS  Google Scholar 

  27. Yusoff N, Rameshkumar P, Shahid M, Huang ST, Huang NM (2017) Amperometric detection of nitric oxide using a glassy carbon electrode modified with gold nanoparticles incorporated into a nanohybrid composed of reduced graphene oxide and Nafion. Microchim Acta 184:3291–3299

    Article  CAS  Google Scholar 

  28. Bard AJ, Faulkner LR (1980) Electrochemical methods. In: John Wiley and Sons. UK, Chichester

    Google Scholar 

  29. Gooding J, Praig VG, Hall EAH (1998) Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal Chem 70:2396–2402

    Article  CAS  PubMed  Google Scholar 

  30. Tao WY, Pan DW, Gong ZH, Peng X (2018) Nanoporous platinum electrode grown on anodic aluminum oxide membrane: fabrication, characterization, electrocatalytic activity toward reactive oxygen and nitrogen species. Anal Chim Acta 1035:44–50

    Article  CAS  PubMed  Google Scholar 

  31. Li YS, Su HM, Wong KS, Li XY (2010) Surface-enhanced Raman spectroscopy on two-dimensional networks of gold nanoparticle-nanocavity dual structures supported on dielectric nanosieves. J Phys Chem C 114:10463–10,477

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 51668047), the Key Research and Development Program of Jiangxi Province (No. 20161ACG70001), and Doctoral Start-up Foundation of Nanchang Hangkong University (NCHU2018120130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinman Tu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Tu, X., Chen, J. et al. High-selectively determination of nitric oxide on nanoporous gold electrode. J Solid State Electrochem 23, 1613–1619 (2019). https://doi.org/10.1007/s10008-019-04259-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04259-9

Keywords

Navigation