Skip to main content
Log in

Polypyrrole nanotube modified by gold nanoparticles for improving the neural microelectrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High selectivity and low impedance are preferred properties for neural microelectrodes. The localized and controlled release of drugs from the nanostructured coatings may reduce brain tissue responses for chronic recordings. Here, polypyrrole (PPy) nanotube was chemically synthesized inside an alumina template. The formation of nanotube was confirmed by scanning electron microscopy (SEM) of the cross-section of templates. Then, PPy nanotube was loaded with dexamethasone (Dex) as a dopant during the polymerization process up to 93%. Successful loading of Dex molecules into the PPy nanotube was verified by the Fourier-transform infrared spectroscopy (FTIR). Gold nanoparticles were synthesized via the reduction of Au3+ ions on the surface of PPy nanotubes and were confirmed by transmission electron microscopy (TEM). The anodic electrophoretic deposition (EPD) method was successfully applied for deposition of 0.1 mg of the synthesized nanostructures on the surface of neural microelectrode in 20 min. Electrochemical impedance spectroscopy (EIS) showed a tenfold decrease in the impedance of the coated microelectrode as compared with the bare one. In vitro studies on U87MG cells demonstrated that the release of Dex from the coating reduced effectively the number of reactive astrocytes without any toxic side effects on SK-NMC and PC12 neuronal cells. Results also indicated that the release of Dex from the carrier can only occur by the electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abidian MR, Corey JM, Kipke DR, Martin DC (2010) Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6(3):421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly(3,4-ethylenedioxythiophene) nanotubes. Adv Mater 21(37):3764–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rui Y, Liu J, Wang Y, Yang C (2011) Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442

    Article  CAS  Google Scholar 

  4. Leprince L, Dogimont A, Magnin D, Demoustier-Champagne S (2010) Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J Mater Sci Mater Med 21(3):925–930

    Article  CAS  PubMed  Google Scholar 

  5. Kim D-H, Wiler JA, Anderson DJ, Kipke DR, Martin DC (2010) Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater 6(1):57–62

    Article  CAS  PubMed  Google Scholar 

  6. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7(Suppl 5):S559–S579

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Turco A, Mazzotta E, Di Franco C, Santacroce MV, Scamarcio G, Monteduro AG, Primiceri E, Malitesta C (2016) Templateless synthesis of polypyrrole nanowires by non-static solution-surface electropolymerization. J Solid State Electrochem 20(8):2143–2151

    Article  CAS  Google Scholar 

  8. Pournaghi-Azar MH, Ojani R (2000) Electrochemistry and electrocatalytic activity of polypyrrole/ferrocyanide films on a glassy carbon electrode. J Solid State Electrochem 4(2):75–79

    Article  CAS  Google Scholar 

  9. Mokrane S, Makhloufi L, Alonso-Vante N (2008) Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. J Solid State Electrochem 12(5):569–574

    Article  CAS  Google Scholar 

  10. Syugaev AV, Maratkanova AN, Smirnov DA (2018) Molecular orientation in electrodeposited polypyrrole films. J Solid State Electrochem 22(7):2127–2134

    Article  CAS  Google Scholar 

  11. Liu X, Yue Z, Higgins MJ, Wallace GG (2011) Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials 32(30):7309–7317

    Article  CAS  PubMed  Google Scholar 

  12. Abidian MR, Martin DC (2008) Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9):1273–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang G, Borgens RB, Cho Y (2011) Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 27(10):6179–6184

    Article  CAS  PubMed  Google Scholar 

  14. Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, Pathak S, Mazzatenta A, Lieber CM, Prato M, Bellamkonda RV, Silva GA, Kam NWS, Patolsky F, Ballerini L (2009) Nanomaterials for neural interfaces. Adv Mater 21(40):3970–4004

    Article  CAS  Google Scholar 

  15. Christina H, Tim B, Thomas S (2011) Polymers for neural implants. J Polym Sci Part B Polym Phys 49:18–33

    Article  CAS  Google Scholar 

  16. Zhou D, Greenbaum E (2010) Implantable neural prostheses 2: techniques and engineering approaches. Biological and medical physics, biomedical engineering. Springer, New York. https://doi.org/10.1007/978-0-387-98120-8

    Book  Google Scholar 

  17. Annibaldi V, Hendy GM, Breslin CB (2019) Studies on the formation and properties of polypyrrole doped with ionised β-cyclodextrins: influence of the anionic pendants. J Solid State Electrochem 23(2):615–626

    Article  CAS  Google Scholar 

  18. Mazzotta E, Caroli A, Primiceri E, Monteduro AG, Maruccio G, Malitesta C (2017) All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation. J Solid State Electrochem 21(12):3495–3504

    Article  CAS  Google Scholar 

  19. Gao W, Li J, Cirillo J, Borgens R, Cho Y (2014) Action at a distance: functional drug delivery using electromagnetic-field-responsive polypyrrole nanowires. Langmuir 30(26):7778–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alshammary B, Walsh FC, Herrasti P, Ponce de Leon C (2016) Electrodeposited conductive polymers for controlled drug release: polypyrrole. J Solid State Electrochem 20(4):839–859

    Article  CAS  Google Scholar 

  21. Deljoo Kojabad Z, Shojaosadati SA (2016) Chemical synthesis of polypyrrole nanostructures: optimization and applications for neural microelectrodes. Mater Des 96:378–384

    Article  CAS  Google Scholar 

  22. Hassanzadeh N, Omidvar H, Tabaian SH (2012) Chemical synthesis of high density and long polypyrrole nanowire arrays using alumina membrane and their hydrogen sensing properties. Superlattice Microst 51(3):314–323

    Article  CAS  Google Scholar 

  23. Sylvestre JP, Díaz-Marín C, Delgado-Charro MB, Guy RH (2008) Iontophoresis of dexamethasone phosphate: competition with chloride ions. J Control Release 131(1):41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi K, Zhitomirsky I (2013) Electrophoretic nanotechnology of graphene–carbon nanotube and graphene–polypyrrole nanofiber composites for electrochemical supercapacitors. J Colloid Interface Sci 407:474–481

    Article  CAS  PubMed  Google Scholar 

  25. Luo X, Matranga C, Tan S, Alba N, Cui XT (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32(26):6316–6323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weaver CL, LaRosa JM, Luo X, Cui XT (2014) Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8(2):1834–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110(3):531–541

    Article  CAS  PubMed  Google Scholar 

  28. Ding J, Wang H, Lin T, Lee B (2008) Electroless synthesis of nano-structured gold particles using conducting polymer nanoparticles. Synth Met 158(14):585–589

    Article  CAS  Google Scholar 

  29. Neoh KG, Tan KK, Goh PL, Huang SW, Kang ET, Tan KL (1999) Electroactive polymer–SiO2 nanocomposites for metal uptake. Polymer 40(4):887–893

    Article  CAS  Google Scholar 

  30. Yang J, Kim DH, Hendricks JL, Leach M, Northey R, Martin DC (2005) Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater 1(1):125–136

    Article  PubMed  Google Scholar 

  31. Deng M, Yang X, Silke M, Qiu W, Xu M, Borghs G, Chen H (2011) Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sensors Actuators B Chem 158(1):176–184

    Article  CAS  Google Scholar 

  32. Zhong Y, Bellamkonda RV (2007) Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 1148:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun T, Tsang WM, Park W-T (2014) Drug release from porous silicon for stable neural interface. Appl Surf Sci 292:843–851

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Shojaosadati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojabad, Z.D., Shojaosadati, S.A., Firoozabadi, S.M. et al. Polypyrrole nanotube modified by gold nanoparticles for improving the neural microelectrodes. J Solid State Electrochem 23, 1533–1539 (2019). https://doi.org/10.1007/s10008-019-04245-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04245-1

Keywords

Navigation