Skip to main content
Log in

Electrochemical performance of LaNi0.6Co0.4O3-δ–Ce0.9Gd0.1O1.95 composite electrode and evaluation of its effective reaction length

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of LaNi0.6Co0.4O3-δ–Ce0.9Gd0.1O1.95 composite electrodes as a function of temperature and p(O2) were investigated by electrochemical impedance spectroscopy. The area-specific conductivity, σE, of the composite electrodes was found higher than the porous LaNi0.6Co0.4O3-δ electrode. The σE greatly depends on their volume ratios, where 70% LaNi0.6Co0.4O3-δ-30% Ce0.9Gd0.1O1.95 showed the highest σE among the compositions. The effective reaction length (lc) of the composite electrodes was estimated by taking the ratio of the calculated capacitance from the impedance analysis to the volume-specific chemical capacitance of LaNi0.6Co0.4O3-δ electrode. The lc is independent of the volume ratio of the composite electrode although the σE greatly depends on their volume ratios, meaning that the lc is independent to the enhancement of σE. Semi-quantitative analysis on the transport properties indicated that the enhancement of the ionic conducting pathway was not the only reason for the enhancement of the electrochemical properties, but also the surface reaction rate of LaNi0.6Co0.4O3-δ was expected to enhance upon contact with Ce0.9Gd0.1O1.95 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adler SB (2004) Factor governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104(10):4791–4844

    Article  CAS  Google Scholar 

  2. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) Nonstoichiometry of the perovskite-type oxides La1-xSrxCoO3-δ. J Solid State Chem 80(19):102–111

    Article  CAS  Google Scholar 

  3. Hayd J, Dieterle L, Guntow U, Gerthsen D, Tiffee EI (2011) Nanoscaled La0.6Sr0.4CoO3-δ as intermediate temperature solid oxide fuel cell cathode : microstructure and electrochemical performance. J Power Sources 196(17):7263–7270

    Article  CAS  Google Scholar 

  4. Rupp GM, Opitz AK, Nenning A, Limbeck A, Fleig J (2017) Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nat Mat 16(6):640–645

    Article  CAS  Google Scholar 

  5. Hjalmarsson P, Sogaard M, Hagen A, Mogensen M (2008) Structural properties and electrochemical performance of strontium- and nickel-substituted lanthanum cobaltite. Solid State Ionics 179(17-18):636–646

    Article  CAS  Google Scholar 

  6. Uzumaki Y, Hashimoto S, Nakamura T, Yashiro K, Amezawa K, Kawada T (2013) Oxygen nonstoichiometry and electrochemical properties in a thin film of nickel substituted lanthanum cobaltite for SOFCs. ECS Trans 57(1):1893–1899

    Article  Google Scholar 

  7. Budiman RA, Uzumaki Y, Hong HJ, Miyazaki T, Hashimoto S, Nakamura T, Yashiro K, Amezawa K, Kawada T (2016) Oxygen nonstoichiometry and transport properties of LaNi0.6Co0.4O3−δ. Solid State Ionics 292:52–58

    Article  CAS  Google Scholar 

  8. Hjalmarsson P, Mogensen M (2011) La0.99Co0.4Ni0.6O3−δ–Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells. J Power Sources 196(17):7237–7244

    Article  CAS  Google Scholar 

  9. Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 143(11):3554–3564

    Article  CAS  Google Scholar 

  10. Dusastre V, Kilner JA (1999) Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State ionic 126(1–2):163–174

    Article  CAS  Google Scholar 

  11. Liu M, Wu Z (1998) Significance of interfaces in solid-state cells with porous electrodes of mixed ionic–electronic conductors. Solid State Ionics 107(1-2):105–110

    Article  CAS  Google Scholar 

  12. Bevilacqua M, Montini T, Tavagnacco C, Fonda E, Fornasiero P, Graziani M (2007) Preparation, characterization, and electrochemical properties of pure and composite LaNi0.6Fe0.4O3-based cathodes for IT-SOFC. Chem Mater 19(24):5926–5936

    Article  CAS  Google Scholar 

  13. Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K, Nagai M, Kim CE (2001) Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics 143(3-4):379–389

    Article  CAS  Google Scholar 

  14. Fu C, Sun K, Zhang N, Chen X, Zhou D (2007) Electrochemical characteristics of LSCF–SDC composite cathode for intermediate temperature SOFC. Electrochim Acta 52(13):4589–4594

    Article  CAS  Google Scholar 

  15. Xu X, Jiang Z, Fan X, Xia C (2006) LSM–SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes. Solid State Ionics 177(19-25):2113–2117

    Article  CAS  Google Scholar 

  16. Murray EP, Sever MJ, Barnett SA (2002) Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. Solid State Ionic 148(1-2):27–34

    Article  Google Scholar 

  17. Kim YT, Shikazono N (2017) Investigation of La0.6Sr0.4CoO3− δ–Ce0.9Gd0.1O1.95 composite cathodes with different volume ratios by three dimensional reconstruction. Solid State Ionics 309:77–85

    Article  CAS  Google Scholar 

  18. Watanabe H (2012) Determination of electrochemically active thickness of a porous mixed ionic and electronic conducting electrode. PhD thesis, Graduate School of Environmental Studies, Tohoku University

  19. Kawada T, Yashiro K, Hashimoto S (2015) 中低温作動SOFCカソードの基礎物性と組織・界面設計. Electrochemistry 83(9):739–745

    Article  Google Scholar 

  20. Kawada T, Suzuki J, Sase M, Kaimai A, Yashiro K, Nigara Y, Mizusaki J, Kawamura K, Yugami H (2002) Determination of oxygen vacancy concentration in a thin film of La0.6Sr0.4CoO3 − δ by an electrochemical method. J Electrochem Soc 149(7):E252–E259

    Article  CAS  Google Scholar 

  21. Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport : chemical capacitance and its implication. Phys Chem Chem Phys 3(9):1668–1678

    Article  CAS  Google Scholar 

  22. Yashiro K, Onuma S, Kaimai A, Nigara Y, Kawada T, Mizusaki J, Kawamura K, Horita T, Yokokawa H (2002) Mass transport properties of Ce0.9Gd0.1O2-δ at the surface and in the bulk. Solid State Ionics 152-153:469–476

    Article  CAS  Google Scholar 

  23. Lane JA, Kilner JA (2000) Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics 136-137(1-2):927–932

    Article  CAS  Google Scholar 

  24. Hong T, Zhang L, Chen F, Xia C (2012) Oxygen surface exchange properties of La0.6Sr0.4Co0.8Fe0.2O3 − δ coated with SmxCe1 − xO2 – δ. J Power Sources 218:254–260

    Article  CAS  Google Scholar 

  25. Budiman RA, Hashimoto S, Nakamura T, Yashiro K, Bagarinao KD, Kishimoto H, Yamaji K, Horita T, Amezawa K, Kawada T (2017) Oxygen reduction reaction process of LaNi0.6Fe0.4O3 − δ film – porous Ce0.9Gd0.1O1.95 heterostructure electrode. Solid State Ionic 312:80–87

    Article  CAS  Google Scholar 

  26. Saher S, Naqash S, Boukamp BA, Hu B, Xia C, Bouwmeester HJM (2017) Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3−δ. J Mater Chem A 5(10):4991–4999

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Japan Science and Technology, Japan, as part of “Phase Interface Science for Highly Efficient Energy Utilization” project in strategic basic research program, JST-CREST Grant (JPMJCR11C1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Budiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budiman, R.A., Uzumaki, Y., Hashimoto, S. et al. Electrochemical performance of LaNi0.6Co0.4O3-δ–Ce0.9Gd0.1O1.95 composite electrode and evaluation of its effective reaction length. J Solid State Electrochem 22, 3955–3963 (2018). https://doi.org/10.1007/s10008-018-4102-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4102-0

Keywords

Navigation