Skip to main content

Advertisement

Log in

Enhanced visible-light photocatalytic performance of Fe3O4 nanopyramids for water splitting and dye degradation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Iron oxide (Fe3O4) pyramid nanostructures were synthesized via a co-precipitation method, without using surfactants or template, for photocatalytic and photoelectrocatalytic activities. The as-made Fe3O4 was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), UV–vis spectroscopy, photoluminescence spectroscopy, N2 adsorption–desorption analysis, and X-ray photoelectron spectroscopy (XPS). The data clearly demonstrate that the Fe3O4 nanostructures display excellent crystallinity, uniform morphology with a Brunauer–Emmett–Teller (BET) surface area of 52.95 m2 g−1, and an optical bandgap of 2.17 eV, which allows them to serve as outstanding catalysts under visible irradiation. The highest photocatalytic activity of ~ 97% was achieved in the degradation of rhodamine B under visible irradiation, with a degradation rate constant of 0.0322 min−1 at room temperature. Further, electrochemical studies demonstrated that the Fe3O4 electrode possesses good electrocatalytic activity in 0.1 M KOH electrolyte. The highest photocurrent density of 1.2 × 10−4 mA cm−2 was observed in the water splitting reaction. The Fe3O4 nanostructures exhibited superior performance in terms of both dye degradation and photoelectrochemical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Yang S (2016) Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. Nanoscale Horiz 1(2):96–108

    Article  CAS  Google Scholar 

  3. Fu H, Pan C, Yao W, Zhu Y (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109(47):22432–22439

    Article  CAS  PubMed  Google Scholar 

  4. Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1(17):2607–2612

    Article  CAS  Google Scholar 

  5. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089

    Article  CAS  PubMed  Google Scholar 

  6. Fu Y, Wang X (2011) Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind Eng Chem Res 50(12):7210–7218

    Article  CAS  Google Scholar 

  7. Zhang LZ, Djerdj I, Cao M, Antonietti M, Niederberger M (2007) Nonaqueous sol–gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst. Adv Mater 19(16):2083–2086

    Article  CAS  Google Scholar 

  8. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43(34):4463–4466

    Article  CAS  Google Scholar 

  9. Gondal MA, Chang X, Ali MA, Yamani ZH, Zhou Q, Ji G (2011) Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532nm pulsed laser exposure. Appl Catal A Gen 397(1-2):192–200

    Article  CAS  Google Scholar 

  10. Shi H, Gondal MA, Al-Saadi AA, Chang X (2015) Visible-light-induced photodegradation enhancement of methyl orange over bismuth oxybromide through a semiconductor mediated process. J Adv Oxid Technol 18:78–84

    CAS  Google Scholar 

  11. Khalil SS, Uvarov V, Fronton S, Popov I, Sasson Y (2012) A novel heterojunction biobr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J Phys Chem C 116(20):11004–11012

    Article  CAS  Google Scholar 

  12. Fu J, Tian YL, Chang BB, Xi FN, Dong XP (2012) BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J Mater Chem 22(39):21159–21166

    Article  CAS  Google Scholar 

  13. Liu YY, Son WJ, Lu JB, Huang BB, Dai Y, Whangbo MH (2011) Composition dependence of the photocatalytic activities of biocl1−xbrx solid solutions under visible light. Chem Eur J 17(34):9342–9349

    Article  CAS  PubMed  Google Scholar 

  14. Kong L, Jiang Z, Xiao TC, Lu LF, Jonesac MO, Edwards PP (2011) Exceptional visible-light-driven photocatalytic activity over BiOBr–ZnFe2O4 heterojunctions. Chem Commun 47(19):5512–5514

    Article  CAS  Google Scholar 

  15. Ye L, Liu J, Jiang Z, Peng T, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B Environ 142–143:1–7

    Google Scholar 

  16. Ma PC, Jiang W, Wang FH, Li FS, Shen P, Chen MD, Wang YJ, Liu J, Li PY (2013) Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets. J Alloys Compd 578:501–506

    Article  CAS  Google Scholar 

  17. Ma WF, Zhang Y, Li LL, You LJ, Zhang P, Zhang YT, Li JM, Yu M, Guo J, Lu HJ, Wang CC (2014) Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core–shell microspheres. Appl Catal B Environ 156–157:314–322

    Google Scholar 

  18. Yao YR, Huang WZ, Zhou H, Yin HY, Zheng YF, Song XC (2014) A novel Fe3O4@SiO2@BiOBr photocatalyst with highly active visible light photocatalytic properties. Mater Chem Phys 148(3):896–902

    Article  CAS  Google Scholar 

  19. Han C, Huang G, Zhu D, Hu K (2017) Facile synthesis of MoS2/Fe3O4 nanocomposite with excellent photo-Fenton-like catalytic performance. Mater Chem Phys 200:16–22

    Article  CAS  Google Scholar 

  20. Palanisamy B, Babu CM, Sundaravel B, Anandan S, Murugesan V (2013) Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252–253:233–242

    Article  CAS  PubMed  Google Scholar 

  21. Xi G, Yue B, Cao J, Ye J (2011) Fe3O4/WO3 hierarchical core–shell structure: high-performance and recyclable visible-light photocatalysis. Chem Eur J 17(18):5145–5154

    Article  CAS  PubMed  Google Scholar 

  22. Allah TAG, Kato S, Satokawa S, Kojima T (2007) Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite. Solid State Sci 9(8):737–743

    Article  CAS  Google Scholar 

  23. Feng Q, Li S, Ma W, Fan HJ, Wan X, Lei Y, Chen Z, Yang J, Qin B (2018) Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation. J Alloys Compd 737:197–206

    Article  CAS  Google Scholar 

  24. Sahar S, Zeb A, Liu Y, Ullah N, Xu A (2017) Enhanced Fenton, photo-Fenton and peroxidase-like activity andstability over Fe3O4/g-C3N4 nanocomposites. Chin J Catal 38(12):2110–2119

    Article  CAS  Google Scholar 

  25. Arshada A, Iqbal J, Ahmad I, Israr M (2018) Graphene/Fe3O4 nanocomposite: interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange. Ceram Int 44(3):2643–2648

    Article  CAS  Google Scholar 

  26. Wang ZX, Wu LM, Chen M, Zhou SX (2009) Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres. J Am Chem Soc 131(32):11276–11277

    Article  CAS  PubMed  Google Scholar 

  27. Chen HL, Lu YM, Hwang WS (2005) Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. Mater Trans 46(4):872–879

    Article  CAS  Google Scholar 

  28. Chen R, Yin C, Liu H, Wei Y (2015) Degradation of rhodamine B during the formation of Fe3O4 nanoparticles by air oxidation of Fe(OH)2. J Mol Catal A Chem 397:114–119

    Article  CAS  Google Scholar 

  29. Zhu M, Diao G (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C 115(39):18923–18934

    Article  CAS  Google Scholar 

  30. Jiang Y, Li G, Li X, Lu S, Wang L, Zhang X (2014) Water-dispersible Fe3O4 nanowires as efficient supports for noble-metal catalyzed aqueous reactions. J Mater Chem A 2(13):4779–4787

    Article  CAS  Google Scholar 

  31. Lv H, Jiangn R, Li Y, Zhang X, Wang J (2015) Microemulsion-mediated hydrothermal growth of pagoda-like Fe3O4 microstructures and their application in a lithium–air battery. Ceram Int 41(7):8843–8848

    Article  CAS  Google Scholar 

  32. Liu XM, Fu SY, Xiao HM (2006) Fabrication of octahedral magnetite microcrystals. Mater Lett 60(24):2979–2983

    Article  CAS  Google Scholar 

  33. Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J, Chen Q (2005) Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chem Phys Lett 401(4-6):374–379

    Article  CAS  Google Scholar 

  34. Katiyar A, Dhar P, Nandi T, Das SK (2016) Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids. J Magn Magn Mater 419:588–599

    Article  CAS  Google Scholar 

  35. Liu F, Zhang CH, Tian J, Xiao C, Shen C, Li J, Gao H (2005) Novel nanopyramid arrays of magnetite. Adv Mater 17(15):1893–1897

    Article  CAS  Google Scholar 

  36. Zhang L, Li Q, Liu S, Ang M, Tade MO, Gu HC (2011) Synthesis of pyramidal, cubical and truncated octahedral magnetite nanocrystals by controlling reaction heating rate. Adv Powder Technol 22(4):532–536

    Article  CAS  Google Scholar 

  37. Zeng Y, Hao R, Xing BG, Hou YL, Xu ZC (2010) One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chem Commun 46(22):3920–3922

    Article  CAS  Google Scholar 

  38. Li X, Si Z, Lei Y, Tang J, Wang S, Su S, Song S, Zhao L, Zhang H (2010) Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms. Cryst Eng Comm 12(7):2060–2063

    Article  CAS  Google Scholar 

  39. Zhang WD, Xiao HM, Zhu LP, Fu SY (2009) Template-free solvothermal synthesis and magnetic properties of novel single-crystalline magnetite nanoplates. J Alloys Compd 477(1-2):736–738

    Article  CAS  Google Scholar 

  40. Zhuang L, Zhang W, Zhao Y, Shen H, Lin H, Liang J (2015) Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci Rep 5(1):9320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Majumder S, Dey S, Bagani K, Dey SK, Banerjee S, Kumar S (2015) A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors. Dalton Trans 44(16):7190–7202

    Article  CAS  PubMed  Google Scholar 

  42. Han C, Ma J, Wu H, Yaowei HK (2015) A low-cost and high-yield production of magnetite nanorods with high saturation magnetization. J Chil Chem Soc 60(1):2799–2802

    Article  CAS  Google Scholar 

  43. Sneha L, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    Article  CAS  Google Scholar 

  44. Herlekar M, Barve S, Kumar R (2014) Plant-mediated green synthesis of iron nanoparticles. J Nanopart 2014:1–9

    Article  CAS  Google Scholar 

  45. Yang C, Wu J, Hou Y (2011) Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun 47(18):5130–5141

    Article  CAS  Google Scholar 

  46. Ghandoor HE, Zidan HM, Khalil MMH, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7:5734–5745

    Google Scholar 

  47. Zhang Q, Zhang Y, Meng Z, Tong W, Yu X, An Q (2017) Constructing the magnetic bifunctional graphene/titania nanosheet-based composite photocatalysts for enhanced visible-light photodegradation of MB and electrochemical ORR from polluted water. Sci Rep 7(1):12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Badawy SM, El-Latif AAA (2017) Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym Compos 38(5):974–980

    Article  CAS  Google Scholar 

  49. Cheng W, Tang K, Qi Y, Sheng J, Liu Z (2010) One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J Mater Chem 20(9):1799–1805

    Article  CAS  Google Scholar 

  50. Sadat ME, Baghbador MK, Dunn AW, Wagner HP, Ewing RC, Zhang J, Xu H, Pauletti GM, Mast DB, Shi D (2014) Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl Phys Lett 105(9):091903

    Article  CAS  Google Scholar 

  51. Arras R, Calmels L, Fonrose BW (2012) Half-metallicity, magnetic moments, and gap states in oxygen-deficient magnetite for spintronic applications. Appl Phys Lett 100(3):032403

    Article  CAS  Google Scholar 

  52. Ma J, Wang L, Wu Y, Dong X, Ma Q, Qiao C, Zhang Q, Zhang J (2014) Facile synthesis of Fe3O4 nanoparticles with a high specific surface area. Mater Trans 55(12):1900–1902

    Article  CAS  Google Scholar 

  53. Ming J, Ming H, Yang W, Kwak W, Park J, Zheng J, Sun Y (2015) A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv 5(12):8793–8800

    Article  CAS  Google Scholar 

  54. Xu P, Zeng G, Huang D, Liu L, Lai C, Chen M, Zhang C, He X, Lai M, He Y (2014) Photocatalytic degradation of phenol by the heterogeneous Fe3O4 nanoparticles and oxalate complex system. RSC Adv 4(77):40828–40836

    Article  CAS  Google Scholar 

  55. Guo P, Jin X (2018) The catalytic effect of nano-Fe3O4 on RhB decolorization by CGDE process. Catal Commun 106:101–105

    Article  CAS  Google Scholar 

  56. Gao Y, Hu C, Zheng WJ, Yang S, Li F, Sun SD, Zrinyi M, Osada Y, Yang ZM, Chen YM (2016) Fe3O4 anisotropic nanostructures in hydrogels: efficient catalysts for the rapid removal of organic dyes from wastewater. ChemPhysChem 17(13):1999–2007

    Article  CAS  PubMed  Google Scholar 

  57. Yue G, Li F, Tan F, Li G, Chen C, Wu J (2014) Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells. RSC Adv 4(109):64068–64074

    Article  CAS  Google Scholar 

  58. Zheng M, Huo J, Tu Y, Jia J, Wu J, Lan Z (2016) An in situ polymerized PEDOT/Fe3O4 composite as a Pt-free counter electrode for highly efficient dye sensitized solar cells. RSC Adv 6(2):1637–1643

    Article  CAS  Google Scholar 

  59. Yao J, Zhang K, Wang W, Zuo X, Yang Q, Wu M, Li G (2018) Great enhancement of electrochemical cyclic voltammetry stabilization of Fe3O4 microspheres by introducing 3DRGO. Electrochim Acta 279:168–176

    Article  CAS  Google Scholar 

  60. Wang L, Shi Y, Wang Y, Zhang H, Zhou H, Wei Y, Tao S, Ma T (2014) Composite catalyst of rosin carbon/Fe3O4: highly efficient counter electrode for dye-sensitized solar cells. Chem Commun 50(14):1701–1703

    Article  CAS  Google Scholar 

  61. Wang L, Shi Y, Zhang H, Bai X, Wang Y, Ma T (2014) Iron oxide nanostructures as highly efficient heterogeneous catalyst for mesoscopic photovoltaics. J Mater Chem A 2(37):15279–15283

    Article  CAS  Google Scholar 

  62. Zhou H, Yin J, Nie Z, Yang Z, Li D, Wang J, Liu X, Jin C, Zhang X, Ma T (2016) Earth-abundant and nano-micro composite catalysts of Fe3O4@reduced graphene oxide for green and economical mesoscopic photovoltaic devices with high efficiencies up to 9%. J Mater Chem A 4(1):67–73

    Article  CAS  Google Scholar 

  63. Wei X, Li Y, Xu W, Zhang K, Yin J, Shi S, Wei J, Di F, Guo J, Wang C, Chu C, Sui N, Chen B, Zhang Y, Hao H, Zhang X, Zhao J, Zhou H, Wang S (2017) From two-dimensional graphene oxide to three-dimensional honeycomb-like Ni3S2@graphene oxide composite: insight into structure and electrocatalytic properties. R Soc Open Sci 4(12):171409

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yusoff N, VijayKumar S, Pandikumar A, Huang NM, Marlinda AR, Anamt MN (2015) Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting. Ceram Int 41(3):5117–5128

    Article  CAS  Google Scholar 

  65. Yao YR, Huang WZ, Zhou H, Zheng YF, Song XC (2014) Self-assembly of dandelion-like Fe3O4@C@BiOCl magnetic nanocomposites with excellent solar-driven photocatalytic properties. J Nanopart Res 16(6):2451

    Article  CAS  Google Scholar 

  66. Zhang W, Kong C, Lu G (2015) Super-paramagnetic nano-Fe3O4/graphene for visible-light-driven hydrogen evolution. Chem Commun 51(50):10158–10161

    Article  CAS  Google Scholar 

  67. Fang B, Wang G, Zhang W, Li M, Kan X (2005) Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanal 17(9):744–748

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (No. 2015R1A2A2A01003741, 2015R1C1A2A01052256, 2018R1D1A1B07048307, and 2017R1A4A1015581).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Neelakanta Reddy, Jaesool Shim, Dongseob Kim or Kisoo Yoo.

Additional information

Highlights

•Fe3O4 pyramid-shaped nanostructures (PSNS) were prepared by co-precipitation method.

•The PSNS showed RhB degradation of ~ 97% in visible light illumination.

•Catalytic activity was stable with a number of test cycles.

•The highest photocurrent density of 1.2 × 10−4 mA/cm2 in photoelectrochemical studies was observed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, I.N., Sreedhar, A., Reddy, C.V. et al. Enhanced visible-light photocatalytic performance of Fe3O4 nanopyramids for water splitting and dye degradation. J Solid State Electrochem 22, 3535–3546 (2018). https://doi.org/10.1007/s10008-018-4054-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4054-4

Keywords

Navigation