Skip to main content

Advertisement

Log in

Corrosion resistance of Co−Cr−W coatings obtained by electrodeposition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion-resistant Co−Cr−W coatings are electrolytically deposited onto the surface of low-carbon (0.25 wt.% C) steel samples from a Cr(III) chloride-based water–dimethylformamide (DMF) bath. Polarization measurements show that corrosion current densities in both sodium chloride and Hank’s solutions are about 10−6 A cm−2. As the obtained coatings contain a certain amount of cracks, they should be deposited onto the surface of copper underlayer in order to provide better protective ability. An XPS study showed that the surface of Co−Cr−W coatings is enriched with chromium compounds as a result of exposure to the corrosive solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Musa AY, Behazin M, Wren JC (2015) Potentiostatic oxide growth kinetics on Ni–Cr and Co–Cr alloys. Potential and pH dependences. Electrochim Acta 162:185–197

    Article  CAS  Google Scholar 

  2. Tesk A, Johnson CE, Skrtic D, Tung M, Hsu S (1999) Amorphous alloys containing cobalt for orthopaedic applications in cobalt-base alloys for medical applications. In: Disegi JA (ed) Cobalt−base alloys for biomedical applications, ASTM Publication, Philadelphia, pp. 32−46

  3. Rosalbino F, Scavino G (2013) Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride containing environment. Electrochim Acta 111:656–662

    Article  CAS  Google Scholar 

  4. Viennot S, Dalard F, Lissac M, Grosgogeat B (2005) Corrosion resistance of cobalt–chromium and palladium–silver alloys used in fixed prosthetic restorations. Eur J Oral Sci 113(1):90–95

    Article  CAS  PubMed  Google Scholar 

  5. Cheng D, Tellkamp VL, Lavernia CJ, Lavernia EJ (2001) Corrosion properties of nanocrystalline Co–Cr coatings. Ann Biomedical Eng 29:803–809

    Article  CAS  Google Scholar 

  6. Liu R, Yao J, Zhang Q, Yao MX, Collier R (2015) Effects of molybdenum content on the wear/erosion and corrosion performance of low-carbon Stellite alloys. Mater Des 78:95–106

    Article  CAS  Google Scholar 

  7. Yamanaka K, Mori M, Chiba A (2015) Surface characterisation of Ni-free Co–Cr–W-based dental alloys exposed to high temperatures and effects of adding silicon. Corros Sci 94:411–419

    Article  CAS  Google Scholar 

  8. Metikoš-Huković M, Babić R (2007) Passivation and corrosion behaviours of cobalt and cobalt−chromium–molybdenum alloys. Corros Sci 49(9):3570–−3579

    Article  CAS  Google Scholar 

  9. Tan MW, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K (1996) The role of chromium and molybdenum in passivation of amorphous Fe–Cr–Mo–P–C alloys in deaerated 1 M HCl. Corros Sci 38(12):2137–2151

    Article  CAS  Google Scholar 

  10. Sousa CAC, Ribeiro DV, Kiminami CS (2016) Corrosion resistance of Fe−Cr based amorphous alloys: an overview. J Non-Crystalline Solids 442:56–66

    Article  CAS  Google Scholar 

  11. Krishna BV, Xue W, Bose S, Bandyopadhyay A (2008) A functionally graded Co−Cr−Mo coating on Ti−6Al−4V alloy structures. Acta Biomater 4(3):697–−706

    Article  CAS  Google Scholar 

  12. Mallik MK, Rao CS, Kesava rao VVS (2014) Procedia Engineering 97:1718–1723. Effect of heat treatment on hardness of Co−Cr−Mo alloy deposited with laser engineered net shaping

    Article  CAS  Google Scholar 

  13. Barekat M, Razavi RS, Ghasemi A (2016) Nd:YAG laser cladding of Co–Cr–Mo alloy on γ-TiAl substrate. Opt Laser Technol 80:145–152

    Article  CAS  Google Scholar 

  14. Sacre S, Thomas LK (1994) Thin oxide films on Co–Cr–W-based coating alloys. Surf Coat Technol 67(1-2):9–13

    Article  CAS  Google Scholar 

  15. Liu R, Li X, Hu X, Dong H (2013) Surface modification of a medical grade Co–Cr–Mo alloy by low-temperature plasma surface alloying with nitrogen and carbon. Surf Coat Technol 232:906–911

    Article  CAS  Google Scholar 

  16. Juzeliunas E, Leinartas K, Samuleviciene M, Sudavicius A, Miecinskas P, Juskenas R, Lisauskas V (2002) Microgravimetric corrosion study of magnetron-sputtered Co−Cr−Mo and Ni–Cr–Mo alloys in oxygen-containing atmosphere. J Solid State Electrochem 6:302–310

    Article  CAS  Google Scholar 

  17. Kuznetsov VV, Pavlov LN, Vinokurov EG, Filatova EA, Kudryavtsev VN (2015) Corrosion resistance of Cr–C–W alloys produced by electrodeposition. J Solid State Electrochem 19:2545–2553

    Article  CAS  Google Scholar 

  18. Kuznetsov VV, Pavlov LN, Vinokurov EG, Filatova EA, Kudryavtsev VN (2015) Electrodeposition of chromium-tungsten alloy from organo-aqueous solutions containing dimethyl formamide. Russ J Electrochem 51(2):174–179

    Article  CAS  Google Scholar 

  19. Kuznetsov VV, Pavlov LN, Filatova EA, Vinokurov EG (2018) Pecularities of chromium electrodeposition from water–dimethylformamide solutions. J Solid State Electrochem 22(1):217–225

    Article  CAS  Google Scholar 

  20. Souza CAC, Bolfarini C, Botta Jr WJ, Lima LRPA, Olivera MF, Kilinami CS (2013) Corrosion resistance and glass forming ability of Fe47Co7Cr15M9Si5B15Y2 (M=Mo, Nb) amorphous alloys. Mater Res 16(6):1294–1298

    Article  Google Scholar 

  21. Waseda Y, Aust KT (1981) Corrosion resistance of metallic glasses. J Mat Sci 16:2337–2359

    Article  CAS  Google Scholar 

  22. Hou Y, Li Y, Wang F, Zhang CH, Koizumi Y, Chiba A (2015) Influence of Mo concentration on corrosion resistance to HF acid solution of Ni–Co–Cr–Mo alloys with and without Cu. Corros Sci 99:185–193

    Article  CAS  Google Scholar 

  23. McCafferty E (2005) Validation of corrosion rates measured the Tafel extrapolation method. Corr Sci 47(12):3202–3215

    Article  CAS  Google Scholar 

  24. Landolt D (2001) Fundamental aspects of alloy plating. Plat Surf Finish 88:70–79

    Google Scholar 

  25. Mayerhofer KE, Neubauer E, Eisenmenger-Sittner C, Hutter H (2002) Adhesion promotion of Cu on C by Cr intermediate layers investigated by SIMS method. Anal Bioanal Chem 374(4):602–607

    Article  CAS  PubMed  Google Scholar 

  26. Edigaryan AA, Safonov VA, Lubnin EN, Vykhodtseva LN, Chusova GE, Polukarov YM (2002) Properties and preparation of amorphous chromium carbide electroplates. Electrochim Acta 47(17):2775–2786

    Article  CAS  Google Scholar 

  27. Lloyd AC, Noël JJ, McIntyre S, Shoesmith DW (2004) Cr, Mo and W additions in Ni and their effect on passivity. Electrochim Acta 49(17-18):3015–3027

    Article  CAS  Google Scholar 

  28. Huang HH (2002) Effect of chemical composition on the corrosion behavior of Ni–Cr–Mo dental casting alloys. J Biomed Mater Res 60(3):458–465

    Article  CAS  PubMed  Google Scholar 

  29. Mishra AK, Shoesmith DW (2013) The activation/depassivation of nickel–chromium–molybdenum alloys: an oxoanion or pH effect–Part II. Electrochim Acta 102:328–335

    Article  CAS  Google Scholar 

  30. Ter-Ovanessian B, Normand B (2016) Passive films growth on different Ni–Cr alloys from the migration of cation vacancies. J Solid State Electrochem 20(1):9–18

    Article  CAS  Google Scholar 

  31. Bond AP, Ulig HH (1960) Corrosion behavior and passivity of nickel–chromium and cobalt–chromium alloys. J Electrochem Soc 107(6):488–493

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Russian Federation (project N 4.4584.2017/BY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.V., Filatova, E.A., Telezhkina, A.V. et al. Corrosion resistance of Co−Cr−W coatings obtained by electrodeposition. J Solid State Electrochem 22, 2267–2276 (2018). https://doi.org/10.1007/s10008-018-3929-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3929-8

Keywords

Navigation