Skip to main content
Log in

Ru(bpy)32+/β-cyclodextrin-Au nanoparticles/nanographene functionalized nanocomposites-based thrombin electrochemiluminescence aptasensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, a functionalized nanocomposite-based electrochemiluminescence (ECL) sensor for detecting thrombin was developed. First, Ru(bpy)32+/β-cyclodextrin-Au nanoparticles (β-CD-AuNPs)/nanographene (NGP) composites were used to modify the glassy carbon electrode (GCE) surface, and then aptamers (TBA1 and TBA2 with a 1:1 M ratio) were labeled with ferrocene (Fc) acting as the probes and were attached to the composite via the host–guest recognition between β-CD and Fc. In the absence of thrombin, the quenching of Fc to [Ru(bpy)3]2+ was maintained, and “signal-off” ECL was observed. However, because of the specific combination of the aptamer probes and thrombin, the configuration of aptamer probes changed and escaped from the electrode surface once thrombin appears, which results in the quenching disappearance, and the ECL signal was changed from “off” to “on.” Meanwhile, the application of nanocomposites amplified the effect of “signal-on.” By this strategy, thrombin was detected with high sensitivity and with a detection limit down to 0.23 pM. Moreover, the relatively simple ECL sensor exhibited excellent reproducibility with at least 6 cycles of recovering the original signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Archiniegas E, Neves CY, Candelle D, Cardier JE (2004) Thrombin and its protease-activated receptor-1 (PAR1) participate in the endothelial-mesenchymal transdifferentiation process. DNA Cell Biol 23(12):815–825

    Article  PubMed  Google Scholar 

  2. Popovic M, Smiljanic K, Dobutovic B, Syrovets T, Simmet T, Isenovic ER (2012) Thrombin and vascular inflammation. Mol Cell Biochem 359(1-2):301–313

    Article  CAS  PubMed  Google Scholar 

  3. Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S (2004) Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 104(9):2746–2751

    Article  CAS  PubMed  Google Scholar 

  4. Nierodzik ML, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10(5):355–362

    Article  CAS  PubMed  Google Scholar 

  5. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  6. Kandimalla VB, Ju HX (2004) New horizons with a multi dimensional tool for applications in analytical chemistry—aptamer. Anal Lett 37(11):2215–2233

    Article  CAS  Google Scholar 

  7. Patel DJ, Suri AK (2000) Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J Biotechnol 74:39–60

    CAS  PubMed  Google Scholar 

  8. Wu ZS, Zheng F, Shen GL, Yu RQ (2009) A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins. Biomaterials 30(15):2950–2955

    Article  CAS  PubMed  Google Scholar 

  9. Cui HF, Cheng L, Zhang J, Liu RH, Zhang C, Fan H (2014) An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution. Biosens Bioelectron 56:124–128

    Article  CAS  PubMed  Google Scholar 

  10. Hong N, Cheng L, Wei GB, Chen CD, He LL, Kong DL, Ceng JX, Cui HF, Fan H (2017) An electrochemical DNA. Sensor without electrode pre-modification. Biosens Bioelectron 91:110–114

    Article  CAS  PubMed  Google Scholar 

  11. Zhu X, Zhang YS, Yang WQ, Liu QD, Lin ZY, Qiu B, Chen GN (2011) Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Anal Chim Acta 684(1-2):121–125

    Article  CAS  PubMed  Google Scholar 

  12. Alpuche-Aviles MA, Wipf DO (2001) Impedance feedback control for scanning electrochemical microscopy. Anal Chem 73(20):4873–4881

    Article  CAS  PubMed  Google Scholar 

  13. Zhang MH, Yuan R, Chai YQ, Chen SH, Zhong HA, Wang C, Cheng YF (2012) A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosens Bioelectron 32(1):288–292

    Article  CAS  PubMed  Google Scholar 

  14. Wang HJ, Bai LJ, Chai YQ, Yuan R (2014) Synthesis of multi-fullerenes encapsulated palladium nanocage, and its application in electrochemiluminescence immunosensors for the detection of streptococcus suis serotype 2. Small 10:1857–1865

    Article  CAS  PubMed  Google Scholar 

  15. Wang XY, Gao A, Lu CC, He XW, Yin XB (2013) An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated Ru(phen)(3)(2+) probe. Biosens Bioelectron 48:120–125

    Article  CAS  PubMed  Google Scholar 

  16. Fang LY, Lv ZZ, Wei H, Wang EK (2008) A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta 628(1):80–86

    Article  CAS  Google Scholar 

  17. Chen Q, Chen H, Zhao YY, Zhang F, Yang F, Tang J, He PG (2014) A label-free electrochemiluminescence aptasensor for thrombin detection based on host-guest recognition between tris(bipyridine) ruthenium(II)-beta-cyclodextrin and aptamer. Biosens Bioelectron 54:547–552

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Chen PP, Wu XY, Chen JH, Xu LJ, Chen GN, Fu FF (2011) A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 26(5):2645–2650

    Article  CAS  PubMed  Google Scholar 

  19. Zhuo BR, Li YQ, Huang X, Lin YJ, Chen YW, Gao WH (2015) An electrochemiluminescence aptasensing platform based on ferrocene-graphene nanosheets for simple and rapid detection of thrombin. Sensors Actuators B Chem 208:518–524

    Article  CAS  Google Scholar 

  20. Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80(3):707–712

    Article  CAS  PubMed  Google Scholar 

  21. Li YJ, Li YQ, Xu N, Pan JH, Chen TF, Chen YW, Gao WH (2017) Dual-signal amplification strategy for electrochemiluminescence sandwich biosensor for detection of thrombin. Sensors Actuators B Chem 240:742–748

    Article  CAS  Google Scholar 

  22. Jie GF, Lu ZK, Zhao Y, Wang XC (2017) Quantum dots bilayers/Au@Ag-based electrochemiluminescence resonance energy transfer for detection of thrombin by autocatalytic multiple amplification strategy. Sensors Actuators B Chem 240:857–862

    Article  CAS  Google Scholar 

  23. Liu YM, Shi GF, Zhang JJ, Zhou M, Cao JT, Huang KJ, Ren SW (2014) A novel label-free electrochemiluminescence aptasensor based on layered flowerlike molybdenum sulfide-graphene nanocomposites as matrix. Colloid Surface B 122:287–293

    Article  CAS  Google Scholar 

  24. Wang J, Jiang XC, Han HY (2016) Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS core(small)/shell(thick) quantum dots and gold nanorods. Biosens Bioelectron 82:26–31

    Article  CAS  PubMed  Google Scholar 

  25. Yu XX, Cui H (2014) Electrochemiluminescence bioassay for thrombin based on dynamic assembly of aptamer, thrombin and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles. Electrochim Acta 125:156–162

    Article  CAS  Google Scholar 

  26. Liu YM, Zhang JJ, Shi GF, Zhou M, Liu YY, Huang KJ, Chen YH (2014) Label-free electrochemiluminescence aptasensor using Ru(bpy)(3)(2+) functionalized dopamine-melanin colloidal nanospheres and gold nanoparticles as signal-amplifying tags. Electrochim Acta 129:222–228

    Article  CAS  Google Scholar 

  27. Bouhadiba A, Belhocine Y, Rahim M, Djilani I, Nouar L, Khatmi DE (2017) Host-guest interaction between tyrosine and (beta-cyclodextrin): molecular modeling and nuclear studies. J Mol Liq 233:358–363

    Article  CAS  Google Scholar 

  28. Wu LD, Deng DH, Jin J, Lu XB, Chen JP (2012) Nano-graphene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosens Bioelectron 35(1):193–199

    Article  CAS  PubMed  Google Scholar 

  29. Ha W, Kang Y, Peng SL, Ding LS, Zhang S, Li BJ (2013) Vesicular gold assemblies based on host-guest inclusion and its controllable release of doxorubicin. Nanotechnology 24(49):495103

    Article  CAS  PubMed  Google Scholar 

  30. Patolsky F, Lichtenstein A, Willner I (2000) Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. J Am Chem Soc 122(2):418–419

    Article  CAS  Google Scholar 

  31. Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39(8):3157–3180

    Article  CAS  PubMed  Google Scholar 

  32. Wang XY, Dong P, Yun W, Xu Y, He PG, Fang YZ (2010) Detection of T4 DNA ligase using a solid-state electrochemiluminescence biosensing switch based on ferrocene-labeled molecular beacon. Talanta 80(5):1643–1647

    Article  CAS  PubMed  Google Scholar 

  33. Shangguan DH, Meng L, Cao ZC, Xiao ZY, Fang XH, Li Y, Cardona D, Witek RP, Liu C, Tan WH (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80(3):721–728

    Article  CAS  PubMed  Google Scholar 

  34. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 38:11768–11769

    Article  CAS  Google Scholar 

  35. Fan H, Chang Z, Xing R, Chen M, Wang QJ, He PG, Fang YZ (2008) An electrochemical aptasensor for detection of thrombin based on target protein-induced strand displacement. Electroanalysis 20(19):2113–2117

    Article  CAS  Google Scholar 

  36. Siegel B, Breslow R (1975) Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents. J Am Chem Soc 97(23):6869–6870

    Article  CAS  Google Scholar 

  37. Centi S, Messina G, Tombelli S, Palchetti I, Mascini M (2008) Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosens Bioelectron 23(11):1602–1609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was kindly supported by the National Natural Science Foundation of China (81660658) and (81560625), JiangXi Science and Education Committee (GJJ160816) and (GJJ160853). Jiangxi University of Traditional Chinese Medicine Innovation Foundation (JZYC18S12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Cheng or Hao Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wei, G., Yao, X. et al. Ru(bpy)32+/β-cyclodextrin-Au nanoparticles/nanographene functionalized nanocomposites-based thrombin electrochemiluminescence aptasensor. J Solid State Electrochem 22, 2059–2066 (2018). https://doi.org/10.1007/s10008-018-3910-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3910-6

Keywords

Navigation