Skip to main content

Advertisement

Log in

Folded nanosheet-like Co0.85Se array for overall water splitting

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Active, stable, and earth-abundant bifunctional electrocatalyst for overall water splitting is pivotal to actualize large-scale water splitting via electrolysis. In this work, the hierarchical folded nanosheet-like Co0.85Se array on Ni foam is constructed by liquid-phase chemical conversion with cobalt precursor nanorod array. It can serve as an efficient bifunctional electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte, with a current density of 10 mA cm−2 at overpotential of 232 mV for OER and 129 mV for HER and Tafel slope of 78.9 mV dec−1 for OER and 95.0 mV dec−1 for HER, respectively. The two-electrode alkaline water electrolyzer utilizing this folded nanosheet-like Co0.85Se array as both anode and cathode toward overall water splitting offered a current of 10 mA cm−2 at a cell voltage of 1.60 V. This work explores an efficient and low-cost electrocatalyst for overall water splitting application in alkaline electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404. https://doi.org/10.1021/jz2016507

    Article  CAS  Google Scholar 

  2. Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang Y, Snyder J, Paulikas AP, Strmcnik D, Kim YT, Myers D, Stamenkovic VR, Markovic NM (2014) Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 53(51):14016–14021. https://doi.org/10.1002/anie.201406455

    Article  CAS  Google Scholar 

  3. Xu S, Chen S, Tian L, Xia Q, Hu W (2016) Selective-leaching method to fabricate an Ir surface-enriched Ir-Ni oxide electrocatalyst for water oxidation. J Solid State Electrochem 20(7):1961–1970. https://doi.org/10.1007/s10008-016-3200-0

    Article  CAS  Google Scholar 

  4. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086. https://doi.org/10.1039/C4CS00470A

    Article  CAS  Google Scholar 

  5. Bai S, Wang CM, Deng MS, Gong M, Bai Y, Jiang J, Xiong YJ (2014) Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew Chem Int Ed 53(45):12120–12124. https://doi.org/10.1002/anie.201406468

    Article  CAS  Google Scholar 

  6. Du NN, Wang CM, Wang XJ, Lin Y, Jiang J, Xiong YJ (2016) Trimetallic tristar nanostructures: tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution. Adv Mater 28(10):2077–2084. https://doi.org/10.1002/adma.201504785

    Article  CAS  Google Scholar 

  7. Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6(12):3553–3558. https://doi.org/10.1039/c3ee42413h

    Article  CAS  Google Scholar 

  8. Liang J, Yang Y, Zhang J, Wu J, Dong P, Yuan J, Zhang G, Lou J (2015) Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale 7:14813–14816. https://doi.org/10.1039/c5nr03724g

  9. Zhou H, Wang Y, He R, Yu F, Sun J, Wang F, Lan Y, Ren Z, Chen S (2016) One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20:29–36. https://doi.org/10.1016/j.nanoen.2015.12.008

  10. Zhang Z, Liu Y, Ren L, Zhang H, Huang Z, Qi X, Wei X, Zhong J (2016) Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: a flexible electrode for efficient hydrogen evolution. Electrochim Acta 200:142–151. https://doi.org/10.1016/j.electacta.2016.03.186

    Article  CAS  Google Scholar 

  11. Ge Y, Gao S, Dong P, Baines R, Ajayan PM, Ye M, Shen J (2017) Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: activities related to non-metal ligands. Nanoscale 9:5538–5544. https://doi.org/10.1039/c6nr09977g

  12. Wang F, Li Y, Shifa TA, Liu K, Wang F, Wang Z, Xu P, Wang Q, He J (2016) Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew Chem Int Ed 55(24):6919–6924. https://doi.org/10.1002/anie.201602802

    Article  CAS  Google Scholar 

  13. Yu B, Wang X, Qi F, Zheng B, He J, Lin J, Zhang W, Li Y, Chen Y (2017) Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl Mater Interfaces 9(8):7154–7159. https://doi.org/10.1021/acsami.6b15719

    Article  CAS  Google Scholar 

  14. Swesi AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9(5):1771–1782. https://doi.org/10.1039/C5EE02463C

    Article  CAS  Google Scholar 

  15. Li X, Han GQ, Liu YR, Dong B, Shang X, Hu WH, Chai YM, Liu YQ, Liu CG (2016) In situ grown pyramid structures of nickel diselenides dependent on oxidized nickel foam as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 205:77–84. https://doi.org/10.1016/j.electacta.2016.04.108

    Article  CAS  Google Scholar 

  16. Yu J, Li Q, Xu CY, Chen N, Li Y, Liu H, Zhen L, Dravida VP, Wu J (2017) NiSe2 pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. J Mater Chem A 5(8):3981–3986. https://doi.org/10.1039/C6TA10303K

    Article  CAS  Google Scholar 

  17. Du Y, Cheng G, Luo W (2017) Colloidal synthesis of urchin-like Fe doped NiSe for efficient oxygen evolution. Nanoscale 9:6821–6825. https://doi.org/10.1039/c7nr01413a

  18. Sivanantham A, Shanmugam S (2017) Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl Catal B 203:485–493. https://doi.org/10.1016/j.apcatb.2016.10.050

  19. Liang H, Li L, Meng F, Dang L, Zhuo J, Forticaux A, Wang Z, Jin S (2015) Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem Mater 27(16):5702–5711. https://doi.org/10.1021/acs.chemmater.5b02177

    Article  CAS  Google Scholar 

  20. Swesi AT, Masud J, Liyanage WPR, Umapathi S, Bohannan E, Medvedeva J, Nath M (2017) Textured NiSe2 film: bifunctional electrocatalyst for full water splitting at remarkably low overpotential with high energy efficiency. Sci Rep 7:2401. https://doi.org/10.1038/s41598-017-02285-z

  21. Amin BG, Swesi AT, Masud J, Nath M (2017) CoNi2Se4 as an efficient bifunctional electrocatalyst for overall water splitting. Chem Commun 53(39):5412–5415. https://doi.org/10.1039/C7CC01489A

  22. Swesi AT, Masud J, Nath M (2016) Enhancing electrocatalytic activity of bifunctional Ni3Se2 for overall water splitting through etching-induced surface nanostructuring. J Mater Res 31(18):2888–2896. https://doi.org/10.1557/jmr.2016.301

  23. Liu T, Asirib AM, Sun X (2016) Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale 8:3911–3915. https://doi.org/10.1039/c5nr07170d

  24. Ming F, Liang H, Shi H, Xu X, Mei G, Wang Z (2016) MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J Mater Chem A 4(39):15148–15155. https://doi.org/10.1039/C6TA06496E

    Article  CAS  Google Scholar 

  25. Pu Z, Luo Y, Asiri AM, Sun X (2016) Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl Mater Interfaces 8(7):4718–4723. https://doi.org/10.1021/acsami.5b12143

    Article  CAS  Google Scholar 

  26. Shi J, Hu J, Luo Y, Sun X, Asiri AM (2015) Ni3Se2 film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catal Sci Technol 5(11):4954–4958. https://doi.org/10.1039/C5CY01121C

  27. Xu R, Wu R, Shi Y, Zhang J, Zhang B (2016) Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 24:103–110. https://doi.org/10.1016/j.nanoen.2016.04.006

  28. Kwak IH, Im HS, Jang DM, Kim YW, Park K, Lim YR, Cha EH, Park J (2016) CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl Mater Interfaces 8:5327−5334. https://doi.org/10.1021/acsami.5b12093

  29. Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3017. https://doi.org/10.1039/c2cs35310e

    Article  CAS  Google Scholar 

  30. Wang JH, Cui W, Liu Q, Xing ZC, Asiri AM, Sun XP (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28(2):215–230. https://doi.org/10.1002/adma.201502696

    Article  CAS  Google Scholar 

  31. Liu YW, Cheng H, Lyu MJ, Fan SJ, Liu QH, Zhang WS, Zhi YD, Wang CM, Xiao C, Wei SQ, Ye BJ, Xie Y (2014) Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc 136(44):15670–15675. https://doi.org/10.1021/ja5085157

  32. Liang L, Cheng H, Lei FC, Han J, Gao S, Wang CM, Sun YF, Qamar S, Wei SQ, Xie Y (2015) Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: robust water-electrolysis catalysts. Angew Chem Int Ed 54(41):12004–12008. https://doi.org/10.1002/anie.201505245

    Article  CAS  Google Scholar 

  33. Kong D, Wang H, Lu Z, Cui Y (2014) CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 136(13):4897–4900. https://doi.org/10.1021/ja501497n

  34. Zhang HX, Yang B, Wu XL, Li ZJ, Lei LC, Zhang XW (2015) Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 7(3):1772–1779. https://doi.org/10.1021/am507373g

  35. Lee C-P, Chen W-F, Billo T, Lin Y-G, Fu F-Y, Samireddi S, Lee C-H, Hwang J-S, Chen K-H, Chen L-C (2016) Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis. J Mater Chem A 4(12):4553–4561. https://doi.org/10.1039/C6TA00464D

  36. Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7(7):2255–2260. https://doi.org/10.1039/C4EE00440J

    Article  CAS  Google Scholar 

  37. Hou Y, Lohe MR, Zhang J, Liu SH, Zhuang XD, Feng XL (2016) Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ Sci 9(2):478–483. https://doi.org/10.1039/C5EE03440J

    Article  CAS  Google Scholar 

  38. Masud J, Swesi AT, Liyanage WPR, Nath M (2016) Cobalt selenide nanostructures: an efficient bifunctional catalyst with high current density at low coverage. ACS Appl Mater Interfaces 8(27):17292–17302. https://doi.org/10.1021/acsami.6b04862

    Article  CAS  Google Scholar 

  39. Meng T, Qin JW, Wang SG, Zhao D, Mao BG, Cao MH (2017) In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. J Mater Chem A 5(15):7001–7014. https://doi.org/10.1039/C7TA01453H

    Article  CAS  Google Scholar 

  40. Liu TT, Liu Q, Asiri AM, Luo YL, Sun XP (2015) An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem Commun 51(93):16683–16686. https://doi.org/10.1039/C5CC06892D

    Article  CAS  Google Scholar 

  41. Xu XJ, Du PY, Chen ZK, Huang MH (2016) An electrodeposited cobalt–selenide-based film as an efficient bifunctional electrocatalyst for full water splitting. J Mater Chem A 4(28):10933–10939. https://doi.org/10.1039/C6TA03788G

    Article  CAS  Google Scholar 

  42. Sun CC, Dong QC, Yang J, Dai ZY, Lin JJ, Chen P, Huang W, Dong XC (2016) Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res 9(8):2234–2243. https://doi.org/10.1007/s12274-016-1110-1

  43. Cao S, Chen Y, Kang L, Lin Z, Fu WF (2015) Enhanced photocatalytic H2-evolution by immobilizing CdS nanocrystals on ultrathin Co0.85Se/RGO–PEI nanosheets. J Mater Chem A 3(36):18711–18717. https://doi.org/10.1039/C5TA04910E

  44. Li SW, Peng SJ, Huang LS, Cui XQ, Al-Enizi AM, Zheng GF (2016) Carbon-coated Co3+-rich cobalt selenide derived from ZIF-67 for efficient electrochemical water oxidation. ACS Appl Mater Interfaces 8(32):20534–20539. https://doi.org/10.1021/acsami.6b07986

  45. Wu ZC, Wang H, Xue YJ, Li BE, Geng BY (2014) ZnO nanorods/ZnSe heteronanostructure arrays with a tunable microstructure of ZnSe shell for visible light photocatalysis. J Mater Chem A 2(41):17502–17510. https://doi.org/10.1039/C4TA02989E

    Article  CAS  Google Scholar 

  46. Liu XJ, Chang Z, Luo L, Xu TH, Lei XD, Liu JF, Sun XM (2014) Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem Mater 26(5):1889–1895. https://doi.org/10.1021/cm4040903

  47. Yang Q, Li T, Lu ZY, Sun XM, Liu JF (2014) Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 6:11789–11794. http://pubs.rsc.org/en/content/articlepdf/2014/nr/c4nr03371j

  48. Yan Y, Xia BY, Ge XM, Liu ZL, Fisher A, Wang X (2015) A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chem Eur J 21(50):18062–18067. https://doi.org/10.1002/chem.201503777

    Article  CAS  Google Scholar 

  49. Gao MR, Cao X, Gao Q, Xu YF, Zheng YR, Jiang J, Yu SH (2014) Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 8(4):3970–3978. https://doi.org/10.1021/nn500880v

  50. Zhu C, Wen D, Leubner S, Oschatz M, Liu W, Holzschuh M, Simon F, Kaskel S, Eychmüller A (2015) Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chem Commun 51(37):7851–7854. https://doi.org/10.1039/C5CC01558H

    Article  CAS  Google Scholar 

  51. Li Y, Hasin P, Wu Y (2010) NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater 22(17):1926–1929. https://doi.org/10.1002/adma.200903896

  52. Liao M, Zeng GF, Luo TT, Jin ZY, Wang YJ, Kou XM, Xiao D (2016) Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochim Acta 194:59–66. https://doi.org/10.1016/j.electacta.2016.02.046

    Article  CAS  Google Scholar 

  53. Li X, Zhang L, Huang MR, Wang SY, Li XM, Zhu HW (2016) Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J Mater Chem A 4(38):14789–14795. https://doi.org/10.1039/C6TA07009D

    Article  CAS  Google Scholar 

  54. Wang HT, Lee H-W, Deng Y, Lu ZY, Hsu P-C, Liu YY, Lin DC, Cui Y (2015) Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun 6:7261. https://doi.org/10.1038/ncomms8261

    Article  CAS  Google Scholar 

  55. Du S, Ren Z, Zhang J, Wu J, Xi W, Zhu J, Fu H (2015) Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem Commun 51(38):8066–8069. https://doi.org/10.1039/C5CC01080B

  56. Xu K, Ding H, Jia KC, Lu XL, Chen PZ, Zhou TP, Cheng H, Liu S, Wu CZ, Xie Y (2016) Solution-liquid-solid synthesis of hexagonal nickel selenide nanowire arrays with a nonmetal catalyst. Angew Chem Int Ed 55(5):1710–1713. https://doi.org/10.1002/anie.201508704

    Article  CAS  Google Scholar 

  57. Jin HY, Wang J, Su DF, Wei ZZ, Pang ZF, Wang Y (2015) In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137(7):2688–2694. https://doi.org/10.1021/ja5127165

    Article  CAS  Google Scholar 

  58. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136(21):7587–7590. https://doi.org/10.1021/ja503372r

    Article  CAS  Google Scholar 

  59. Lu Q, Hutchings GS, Yu WT, Zhou Y, Forest RV, Tao RZ, Rosen J, Yonemoto BT, Cao ZY, Zheng HM, Xiao JQ, Jiao F, Chen JGG (2015) Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 6:6567. https://doi.org/10.1038/ncomms7567

    Article  CAS  Google Scholar 

  60. Tang C, Cheng NY, Pu ZH, Xing W, Sun XP (2015) NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew Chem Int Ed 54(32):9351–9355. https://doi.org/10.1002/anie.201503407

    Article  CAS  Google Scholar 

  61. Su DF, Wang J, Jin HY, Gong YT, Li MM, Pang ZF, Wang Y (2015) From “waste to gold”: a one-pot method to synthesize ultrafinely dispersed Fe2O3-based nanoparticles on N-doped carbon for synergistic and efficient water splitting. J Mater Chem A 3(22):11756–11761. https://doi.org/10.1039/C5TA02217G

  62. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25(40):5807–5813. https://doi.org/10.1002/adma.201302685

  63. Zhou X, Jiang J, Ding T, Zhang J, Pan B, Zuo J, Yang Q Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nanosheets for highperformance hydrogen evolution.(2014) Nanoscale 6:11046–11051. http://pubs.rsc.org/en/content/articlepdf/2014/nr/c4nr02716g

  64. Peng Z, Jia D, Al-Enini AM, Elzatahry AA, Zheng GF (2015) From water oxidation to reduction: homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv Energy Mater 5(9):1402031. https://doi.org/10.1002/aenm.201402031

    Article  Google Scholar 

  65. Wang XG, Li W, Xiong DH, Liu LF (2016) Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. J Mater Chem A 4(15):5639–5646. https://doi.org/10.1039/C5TA10317G

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (no. 21671006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengcui Wu.

Electronic supplementary material

The online version of this article contains supplementary material, which is available to authorized users. (DOCX 11429 kb)

ESM 1

(DOCX 11429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Li, J., Zou, Z. et al. Folded nanosheet-like Co0.85Se array for overall water splitting. J Solid State Electrochem 22, 1785–1794 (2018). https://doi.org/10.1007/s10008-018-3885-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3885-3

Keywords

Navigation