Skip to main content

Advertisement

Log in

Fabrication of β-Ni(OH)2 ∥ γ-Fe2O3 nanostructures for high-performance asymmetric supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we have fabricated a novel β-Ni(OH)2 hierarchical nanostructures (HNs) ∥ γ-Fe2O3 nanohexagons (NHs) and investigated their potential as electrode material for high-performance asymmetric supercapacitor. The X-ray diffraction and transmission electron microscopy analyses confirmed the presence of β-Ni(OH)2 and γ-Fe2O3 in the obtained products. The electrochemical performance of single electrodes containing β-Ni(OH)2 HNs and γ-Fe2O3 NHs supported on the nickel foam exhibited high specific capacitances of 3232.08 and 1800.06 F g−1 at the current densities of 3 and 13 mA cm−2, respectively. As a result, we have fabricated an asymmetric supercapacitor device using β-Ni(OH)2 HN ∥ γ-Fe2O3 NH electrodes which exhibited high energy density of 99.28 W h kg−1 at a power density of 1599.85 W kg−1, with excellent cycling stability of 89.3% after 5000 cycles. Our results demonstrated that the β-Ni(OH)2 HN ∥ γ-Fe2O3 NH electrode material could serve as a potential candidate for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 43:797–828

    Article  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  4. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  5. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage device. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  6. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  7. Zhao X, Sanchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nano 3:839–855

    CAS  Google Scholar 

  8. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  9. Cheng Z, Tan G, Qiu Y, Guo B, Cheng F, Fan H (2015) High performance electrochemical capacitors based on MnO2/activated–carbon-paper. J Mater Chem C 3:6166–6171

    Article  CAS  Google Scholar 

  10. Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Sources 327:297–318

    Article  CAS  Google Scholar 

  11. Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster HE, Zhang Y, Zhang S, Yang S, Yan Q, Ajayan PM, Vajtai R (2013) Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett 13:5408–5413

    Article  CAS  Google Scholar 

  12. Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777

    Article  CAS  Google Scholar 

  13. Li X, Xiong S, Lim J, Bai J, Qian Y (2012) Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. J Mater Chem 22:14276–14283

    Article  CAS  Google Scholar 

  14. Yang GW, Xu CL, Li HL (2008) Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun 0:6537–6539

    Article  CAS  Google Scholar 

  15. Lu Z, Chang Z, Zhu W, Sun X (2011) Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical faradaic capacitance. Chem Commun 47:9651–9653

    Article  CAS  Google Scholar 

  16. Wang DW, Li F, Cheng HM (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitors. J Power Sources 185:1563–1568

    Article  CAS  Google Scholar 

  17. Li J, Yang M, Wei J, Zhou Z (2012) Preparation and electrochemical performance of doughnut-like Ni(OH)2-Co(OH)2 composites as pseudocapacitor materials. Nano 4:4498–4503

    CAS  Google Scholar 

  18. Min S, Zhao C, Chen G, Qian X (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164

    Article  CAS  Google Scholar 

  19. Fang DL, Chen ZD, Liu X, Wu ZF, Zheng CH (2012) Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim Acta 81:321–329

    Article  CAS  Google Scholar 

  20. Pratt A, Lari L, Hovorka O, Shah A, Woffinden C, Tear SP, Binns C, Kroger R (2014) Enhanced oxidation of nanoparticles through strain mediated ionic transport. Nat Mater 13:26–30

    Article  CAS  Google Scholar 

  21. Chen HC, Wang CC, Lu SY (2014) γ-Fe2O3/graphene nanocomposites as a stable high performance anode materials for neutral aqueous supercapacitors. J Mater Chem A 2:16955–16962

    Article  CAS  Google Scholar 

  22. Liu Y, Liu F, Chen Y, Jiang J, Ai Y, Han S, Liu H (2016) Self-assembled graphene coupled hollow-structured γ-Fe2O3 spheres with crystal of transition for enhanced supercapacitors. RSC Adv 6:23659–23665

    Article  CAS  Google Scholar 

  23. Jeevanandam P, Koltypin Y, Gedanken A (2001) Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Lett 1:263–266

    Article  CAS  Google Scholar 

  24. Marco JF, Gancedo JR, Gracia M (2000) Characterization of nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J. Solid State Chem 153:74–81

    Article  CAS  Google Scholar 

  25. Szubzda B, Szmaja A, Halama A (2012) Influence of structure and wettability of supercapacitor electrodes carbon materials on their electrochemical properties in water and organic solutions. Electrochim Acta 86:255–259

    Article  CAS  Google Scholar 

  26. Wu Z, Huang XL, Wang ZL, Xu JJ, Wang HG, Zhang XB (2014) Electrostatic induced stretch growth of homogeneous β-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors. Sci Rep 4:3669

    Article  Google Scholar 

  27. Parveen N, Cho MH (2016) Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications. Sci Rep 6:27318

    Article  CAS  Google Scholar 

  28. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  Google Scholar 

  29. Song MK, Cheng S, Chen H, Qin W, Nam KW, Xu S, Yang XQ, Bongiorno A, Lee J, Bai J, Tyson TA, Cho J, Liu M (2012) Anomalous pseudocapacitive behaviour of a nanostructured, mixed valent manganese oxide film for electrical energy storage. Nano Lett 12:3483–3490

    Article  CAS  Google Scholar 

  30. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y (2014) Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep 4:5787

    Article  CAS  Google Scholar 

  31. Arul NS, Mangalaraj D, Ramachandran R, Grace AN, Han JI (2015) Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J Mater Chem A 3:15248–15258

    Article  CAS  Google Scholar 

  32. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  33. Cao D, Li H, Pan L, Li J, Wang X, Jing P, Cheng X, Wang W, Wang J, Liu Q (2016) High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci Rep 6:32360

    Article  CAS  Google Scholar 

  34. Long C, Wei T, Yan J, Jiang L, Fan Z (2013) Supercapacitors based on graphene supported iron nanosheets as negative electrode materials. ACS Nano 7:11325–11332

    Article  CAS  Google Scholar 

  35. Khomenko V, Raymundo-Pinero E, Beguin F (2006) Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. J Power Sources 153:183–190

    Article  CAS  Google Scholar 

  36. Jiao Y, Liu Y, Yin B, Zhang S, Qu F, Wu X (2014) α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalyst. Nano Energy 10:90–98

    Article  CAS  Google Scholar 

  37. Tang Z, Tang CH, Gong H (2012) A high energy density asymmetric supercapacitor form nano-architectured Ni(OH)2/carbon nanotubes electrodes. Adv Funct Mater 22:1272–1278

    Article  CAS  Google Scholar 

  38. Lo IH, Wang JY, Huang KY, Huang JH, Kang WP (2016) Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors. J Power Sources 308:29–36

    Article  CAS  Google Scholar 

  39. Mao Y, Li T, Guo C, Zhu F, Zhang C, Wei Y, Hou L (2016) Cycling stability of ultrafine β-Ni(OH)2 nanosheets for high capacity energy storage device via a multilayer nickel foam electrode. Electrochim Acta 211:44–51

    Article  CAS  Google Scholar 

  40. Zhang Y, Zhao Y, An W, Xing L, Gao Y, Liu J (2017) Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J Mater Chem A 5:10039–10047

    Article  CAS  Google Scholar 

  41. Raut SS, Sankapal BR (2016) Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards supercapacitor application. New J Chem 40:2619–2627

    Article  CAS  Google Scholar 

  42. Tang PY, Han LJ, Genc A, He YM, Zhang X, Zhang L, Mascaros JRG, Morante JR, Arbiol J (2016) Synergetic effect in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy 22:189–201

    Article  CAS  Google Scholar 

  43. Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M (2011) Carbon–based supercapacitors produced by activation of graphene. Science 332:1539–1541

    Google Scholar 

  44. Dell R (2000) Batteries fifty years of materials development. Solid State Ionics 134:139–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030456).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Sabari Arul or Jeong In Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabari Arul, N., In Han, J. & Chen, P.C. Fabrication of β-Ni(OH)2 ∥ γ-Fe2O3 nanostructures for high-performance asymmetric supercapacitors. J Solid State Electrochem 22, 293–302 (2018). https://doi.org/10.1007/s10008-017-3769-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3769-y

Keywords

Navigation