Skip to main content
Log in

Facile synthesis of LiMn2O4 microsheets with porous micro-nanostructure as high-rate cathode materials for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous LiMn2O4 microsheets with micro-nanostructure have been successfully prepared through a simple carbon gel-combustion process with a microporous membrane as hard template. The crystal structure, morphology, chemical composition, and surface analysis of the as-obtained LiMn2O4 microsheets are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscope (XPS). It can be found that the as-prepared LiMn2O4 sample presents the two-dimensional (2-D) sheet structure with porous structure comprised with nano-scaled particles. As cathode materials for lithium-ion batteries, the obtained LiMn2O4 microsheets show superior rate capacities and cycling performance at various charge/discharge rates. The LiMn2O4 microsheets exhibit a higher charge and discharge capacity of 137.0 and 134.7 mAh g−1 in the first cycle at 0.5 C, and it remains 127.6 mAh g−1 after 50 cycles, which accounts for 94.7% discharge capacity retention. Even at 10 C rate, the electrode also delivers the discharge capacity of 91.0 mAh g−1 after 300 cycles (93.5% capacity retention). The superior electrochemical properties of the LiMn2O4 microsheets could be attributed to the unique microsheets with porous micro-nanostructure, more active sites of the Li-ions insertion/deinsertion for the higher contact area between the LiMn2O4 nano-scaled particles and the electrolyte, and better kinetic properties, suggesting the applications of the sample in high-power lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886

    Article  CAS  Google Scholar 

  2. Xia H, Luo Z, Xie J (2012) Nanostructured LiMn2O4 and their composites as high–performance cathodes for lithium-ion batteries. Prog Nat Sci: Mater Int 22(6):572–584

    Article  Google Scholar 

  3. Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for li-ion batteries. Nano Lett 10:3852–3856

    Article  CAS  Google Scholar 

  4. Lee S, Cho Y, Song HK, Lee KT, Cho J (2012) Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem Int Ed 51:8748–8752

    Article  CAS  Google Scholar 

  5. Chen J, Zou YC, Zhang F, Zhang YC, Guo FF, Li GD (2013) Superior electrode performance of LiFePO4/C composite prepared by an in situ polymerization restriction method. J Alloys Compd 563:264–268

    Article  CAS  Google Scholar 

  6. Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27:990–993

    Article  CAS  Google Scholar 

  7. Zhou N, Liu Y, Li J, Uchaker E, Liu S, Huang K, Cao G (2012) Synthesis and characterization of high power LiFePO4/C nano-plate thin films. J Power Sources 213:100–105

    Article  CAS  Google Scholar 

  8. Zhang S, Zhang P, Xie A, Li S, Huang F, Shen Y (2016) A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery. Electrochim Acta 212:912–920

    Article  CAS  Google Scholar 

  9. Huang H, Fang J, Xia Y, Tao X, Gan Y, Du J, Zhu W, Zhang W (2013) Construction of sheet-belt hybrid nanostructuresfrom one-dimensional mesoporous TiO2(B) nanobelts and grapheme sheets for advanced lithium−ion batteries. J Mater Chem A 1:2495–2500

    Article  CAS  Google Scholar 

  10. Wang D, Cao L, Huang J, Wu J (2012) Synthesis and electrochemical properties of submicron sized sheet-like LiV3O8 crystallites for lithium secondary batteries. Mater Lett 71:48–50

    Article  CAS  Google Scholar 

  11. Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L (2015) LiMO2 (M = Mn, Co, Ni) hexagonal sheets with (101) facets for ultrafast charging-discharging lithium ion batteries. J Power Sources 276:238–246

    Article  CAS  Google Scholar 

  12. Fang L, Zhang H, Zhang Y, Liu L, Wang Y (2016) Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. J Power Sources 312:101–108

    Article  CAS  Google Scholar 

  13. Shao L, Wu K, Lin X, Shui M, Ma R, Wang D, Long N, Ren Y, Shu J (2014) Sol-gel preparation of V2O5 sheets and their lithium storage behaviors studied by electrochemical and in-situ X-ray diffraction techniques. Ceram Int 40:6115–6125

    Article  CAS  Google Scholar 

  14. Chen M, Xia X, Qi M, Yuan J, Yin J, Chen Q (2015) Controllable synthesis of hierarchical porous nickel oxide sheets arrays as anode for high-performance lithium ion batteries. Electrochim Acta 184:17–23

    Article  CAS  Google Scholar 

  15. Cheng Y, Ni X, Feng K, Zhang H, Li X, Zhang H (2016) Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. J Power Sources 326:203–210

    Article  CAS  Google Scholar 

  16. Teng F, Hu ZH, Ma XH, Zhang LC, Ding CX, Yu Y, Chen CH (2013) Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochim Acta 91:43–49

    Article  CAS  Google Scholar 

  17. Qiao YQ, Wang XL, Mai YJ, Xiang YJ, Zhang D, Gu CD, Tu JP (2011) Synthesis of plate-like Li3V2(PO4)3/C as a cathode material for Li-ion batteries. J Power Sources 196:8706–8709

    Article  CAS  Google Scholar 

  18. Sun W, Cao F, Liu Y, Zhao X, Liu X, Yuan J (2012) Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries. J Mater Chem 22:20952–20957

    Article  CAS  Google Scholar 

  19. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  CAS  Google Scholar 

  20. Chen J, Zhao N, Li GD, Guo FF, Zhao J, Zhao Y, Jia T, Fu F, Li J (2016) High rate performance of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a carbon gel-combustion process for lithium ion batteries. Mater Res Bull 73:192–196

    Article  CAS  Google Scholar 

  21. Castro S, Gayoso M, Rodiguez C (1997) A study of the combustion method to prepare fine ferrite particles. J Solid State Chem 134:227–231

    Article  CAS  Google Scholar 

  22. Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core-shell nanostructures. Nano 3:3967–3983

    CAS  Google Scholar 

  23. Deng J, Pan J, Yao Q, Wang Z, Zhou H, Rao G (2015) Porous core-shell LiMn2O4 microellipsoids as high-performance cathode materials for Li-ion batteries. J Power Sources 278:370–374

    Article  CAS  Google Scholar 

  24. Zhu Q, Zheng S, Lu X, Wan Y, Chen Q, Yang J, Zhang LZ, Lu Z (2016) Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J Alloys Compd 654:384–391

    Article  CAS  Google Scholar 

  25. Zhao H, Li F, Liu X, Xiong W, Chen B, Shao H, Que D, Zhang Z, Wu Y (2015) A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries. Electrochim Acta 166:124–133

    Article  CAS  Google Scholar 

  26. Wang HQ, Lai FY, Li Y, Zhang XH, Huang YG, Hu SJ, Li QY (2015) Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim Acta 177:290–297

    Article  CAS  Google Scholar 

  27. Chen J, Zhao N, Li GD, Guo FF, Wang X, Jia T, Zhao J, Zhao Y, Wang X, Wan L (2016) Superior performance of LiFePO4/C with porous structure synthesized by an in situ polymerization restriction method for lithium ion batteries. Mater Chem Phys 180:244–249

    Article  CAS  Google Scholar 

  28. Cai Y, Huang Y, Wang X, Jia D, Pang W, Guo Z, Du Y, Tang X (2015) Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J Power Sources 278:574–581

    Article  CAS  Google Scholar 

  29. Ding YL, Xie J, Cao GS, Zhu TJ, Yu HM, Zhao XB (2011) Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv Funct Mater 21:348–355

    Article  CAS  Google Scholar 

  30. Chen S, Chen Z, Cao C (2016) Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochim Acta 199:51–58

    Article  CAS  Google Scholar 

  31. Wang F, Wang J, Ren H, Tang H, Yu R, Wang D (2016) Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg Chem Front 3:365–369

    Article  CAS  Google Scholar 

  32. Liu W, Kowal K, Farrington GC (1998) Mechanism of the electrochemical insertion of lithium into LiMn2O4 Spinels. J Electrochem Soc 145(2):459–465

    Article  CAS  Google Scholar 

  33. Chen P, Wu H, Huang S, Zhang Y (2016) Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials. Ceram Int 42:10498–10505

    Article  CAS  Google Scholar 

  34. Lai F, Zhang X, Wang H, Hu S, Wu X, Wu Q, Huang Y, He Z, Li Q (2016) Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries. ACS Appl Mater Interfaces 8:21656–21665

    Article  CAS  Google Scholar 

  35. Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Self−standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22:475–482

    Article  CAS  Google Scholar 

  36. Waller GH, Brooke PD, Rainwater BH, Lai SY, Hu R, Ding Y, Alamgir FM, Sandhage KH, Liu ML (2016) Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved life time. J Power Sources 306:162–170

    Article  CAS  Google Scholar 

  37. Wu Y, Cao C, Zhang J, Wang L, Ma X, Xu X (2016) Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium−ion batteries. ACS Appl Mater Interfaces 8:19567–19572

    Article  CAS  Google Scholar 

  38. Zhang H, Li Z, Yu S, Xiao Q, Lei G, Ding Y (2016) Carbon-encapsulated LiMn2O4 spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries. J Power Sources 301:376–385

    Article  CAS  Google Scholar 

  39. Jiang H, Fu Y, Hu Y, Yan C, Zhang L, Lee PS, Li C (2014) Hollow LiMn2O4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances. Small 10:1096–1100

    Article  CAS  Google Scholar 

  40. Tang SB, Lai MO, Lu L (2008) Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques. Mater Chem Phys 111:149–153

    Article  CAS  Google Scholar 

  41. Guo D, Chang Z, Tang H, Li B, Xu X, Yuan XZ, Wang H (2014) Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4. Electrochim Acta 123:254–259

    Article  CAS  Google Scholar 

  42. Wang J, Liu W, Liu S, Chen J, Wang H, Zhao S (2016) Biomass derived fabrication of a novel sea cucumber-like LiMn2O4/C composite with a hierarchical porous structure as the cathode for lithium-ion batteries. Electrochim Acta 188:645–652

    Article  CAS  Google Scholar 

  43. Liu H, Tian R, Jiang Y, Tan X, Chen J, Zhang L, Guo Y, Wang H, Sun L, Chu W (2015) On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route. Electrochim Acta 180:138–146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Education Department of Henan Province (15A430033) and Research Foundation for Doctors of Luoyang Institute of Science and Technology (2013BZ08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Chen or Na Zhao.

Electronic supplementary material

ESM 1

(DOC 2777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhao, N., Zhao, J. et al. Facile synthesis of LiMn2O4 microsheets with porous micro-nanostructure as high-rate cathode materials for Li-ion batteries. J Solid State Electrochem 22, 331–338 (2018). https://doi.org/10.1007/s10008-017-3755-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3755-4

Keywords

Navigation