Skip to main content

Advertisement

Log in

Electrophoretic preparation of graphene-iron oxide nanocomposite as an efficient Pt-free counter electrode for dye-sensitized solar cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fe3O4-reduced graphene oxide (Fe3O4-RGO) binder-free counter electrode (CE) is prepared by using an easy and low-cost electrophoretic deposition method and controlling the hydrogen evolution process followed by an electrochemical reduction process for dye-sensitized solar cell (DSSC). X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive spectrometer, Raman spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy (TEM) indicate clearly the formation of Fe3O4-RGO nanocomposite. TEM images show that the Fe3O4 nanoparticles with diameters in the range of 10–30 nm are uniformly deposited on RGO. The layer-by-layer deposition of iron oxide species anchored on graphene nanosheets during the EPD on FTO provides a unique film for DSSC. To evaluate the chemical catalysis and stability of prepared CEs toward I3 reduction and the interfacial charge transfer properties, Fe3O4-RGO nanocomposite and RGO are characterized by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectroscopy. Under AM 1.5 irradiation (100 mW cm−2), the DSSC based on the Fe3O4-RGO shows a power conversion efficiency of 5.91%, which is comparable with the Pt CE, suggesting that the Fe3O4-RGO nanocomposite is an effective CE material for low-cost DSSC. The proposed approach can prepare a thin film of Fe3O4-RGO at short time with suitable performance in DSSC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hagfeldt A, Boschloo G, Sun L, Kloo L, Petterssn H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  2. Yang W, Ma X, Xu X, Li Y, Raj S, Ning G, Wang A, Chen SH (2015) Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells. J Power Sources 282:228–234

    Article  CAS  Google Scholar 

  3. Wu M, Ma T (2014) Recent progress of counter electrode catalysts in dye-sensitized solar cells. J Phys Chem C 118:16727–16742

    Article  CAS  Google Scholar 

  4. Jinbiao J, Jihuai W, Yongguang T, Jinghao H, Min Z, Jianming L (2015) Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells. J Alloys Compd 640:29–33

    Article  Google Scholar 

  5. O’Reagen B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–74+0

    Article  Google Scholar 

  6. Li P, Wu J, Lin J, Huang M, Huang Y, Li Q (2009) High-performance and low platinum loading Pt/carbon black counter electrode for dye-sensitized solar cells. Sol Energy 83:845–849

    Article  CAS  Google Scholar 

  7. Velten J, Mozer AJ, Li D, Officer D, Wallace G, Baughman R, Zakhidov A (2012) Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23:085201

    Article  Google Scholar 

  8. Dao VD, Larina LL, Lee JK, Jung KD, Huy BT, Choi HS (2015) Graphene-based RuO2 nanohybrid as a highly efficient catalyst for triiodide reduction in dye-sensitized solar cells. Carbon 81:710–719

    Article  CAS  Google Scholar 

  9. Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332

    Article  CAS  Google Scholar 

  10. Kyotani T, Tsai L, Tomita A (1997) Formation of platinum nanorods and nanoparticles in uniform carbon nanotubes prepared by a template carbonization method. Chem Commun 4756:701–702

    Article  Google Scholar 

  11. Flahaut E, Peigney A, Laurent C, Marlière C, Chastel F, Rousset A (2000) Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812

    Article  CAS  Google Scholar 

  12. Van der Zaag P, Bloemen P (2000) On the construction of an Fe3O4-based all-oxide spin valve. J Magn Magn Mater 211:301–308

    Article  Google Scholar 

  13. Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149:174–180

    Article  CAS  Google Scholar 

  14. Tahir AA, Upul Wijayantha KG, Saremi-Yarahmadi S, Maznar M, Mckee V (2009) Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem Mater 21:3763–3772

    Article  CAS  Google Scholar 

  15. Deosarkar MP, Pawar SM, Bhanvase BA (2014) In situ sonochemical synthesis of Fe3O4-graphene nanocomposite for lithium rechargeable batteries. Chem Eng Process Process Intensif 83:49–55

    Article  CAS  Google Scholar 

  16. Li L, Gao P, Gai S, He F, Chen Y, Zhang M, Yang P (2016) Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim Acta 190:566–573

    Article  CAS  Google Scholar 

  17. Ding Y, Shen SZ, Sun H, Sun K, Liu F, Qi Y, Yan J (2015) Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C 48:487–498

    Article  CAS  Google Scholar 

  18. Houmad M, Zaari H, Benyoussef A, El Kenz A, Ez-Zahraouy H (2015) Optical conductivity enhancement and band gap opening with silicon doped graphene. Carbon 94:1021–1027

    Article  CAS  Google Scholar 

  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  20. An SJ, Zhu Y, Lee SH, Stoller MD, Emilsson T, Park S, Velamakanni A, An J, Ruoff R (2010) Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett 1:1259–1263

    Article  CAS  Google Scholar 

  21. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  CAS  Google Scholar 

  22. Huo J, Zheng M, Tu Y, Wu J, Hu L, Dai S (2015) A high performance cobalt sulfide counter electrode for dye-sensitized solar cells. Electrochim Acta 159:166–173

    Article  CAS  Google Scholar 

  23. Sarkar P, De D, Uchikochi T, Besra L (2012) Electrophoretic deposition (EPD): fundamentals and novel applications in fabrication of advanced ceramic microstructures. Electrophor Depos Nanomater 52:190

    Google Scholar 

  24. Battumur T, Mujawar SH, Truong QT, Ambade SB, Lee DS, Lee W, Han SH (2012) Graphene/carbon nanotubes composites as a counter electrode for dye-sensitized solar cells. Curr Appl Phys 12:49–53

    Article  Google Scholar 

  25. Dou YY, Li GR, Song J, Gao XP (2012) Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Phys Chem Chem Phys 14:1339–1342

    Article  CAS  Google Scholar 

  26. Yue G, Lin JY, Tai SY, Xiao Y, Wu J (2012) A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim Acta 85:162–168

    Article  CAS  Google Scholar 

  27. William J, Hummers S, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  28. Wu Z, Pei S, Ren W, Tang D, Gao L, Liu B, Cheng H (2009) Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv Mater 21:1756–1760

    Article  CAS  Google Scholar 

  29. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H (2010) Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840

    Article  CAS  Google Scholar 

  30. Salamon J, Sathishkumar Y, Ramachandran K, Soo Y, Jin D, Rhan A, Gnana G (2015) One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens Bioelectron 64:269–276

    Article  CAS  Google Scholar 

  31. Cao K, Jiao L, Liu H, Liu Y, Wang Y, Guo Z, Yuan H (2015) 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv Energy Mater 5:1–9

    Google Scholar 

  32. Izaki M, Shinoura O (2001) Room-temperature deposition of defect-free magnetite film by chemical reaction from an aqueous solution. Adv Mater 13:142–145

    Article  CAS  Google Scholar 

  33. Peng S, Zhu P, Thavasi V, Mhaisalkar SG, Ramakrishna S (2011) Facile solution deposition of ZnIn2S4 nanosheet films on FTO substrates for photoelectric application †. Nano 3:2602–2608

    CAS  Google Scholar 

  34. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998

    Article  CAS  Google Scholar 

  35. Ghasemi S, Ahmadi F (2015) Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. J Power Sources 289:129–137

    Article  CAS  Google Scholar 

  36. Zhang M, Jia MQ, Jin YH (2012) Fe3O4/reduced graphene oxide nanocomposite as high performance anode for lithium ion batteries. Appl Surf Sci 261:298–305

    Article  CAS  Google Scholar 

  37. Li X, Huang X, Liu D, Wang X, Song S, Zhou L, Zhang H (2011) Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C 115:21567–21573

    Article  CAS  Google Scholar 

  38. Sun G, Dong B, Cao M, Wei B, Hu C (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23:1587–1593

    Article  CAS  Google Scholar 

  39. Li X, Si Z, Lei Y, Tang J, Wang S, Su S, Song S, Zhao L, Zhang H (2010) Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms. Cryst Eng Comm 12:2060

    Article  CAS  Google Scholar 

  40. Bhuvaneswari S, Pratheeksha PM, Anandan S, Rangappa D, Gopalan R, Rao TN (2014) Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Phys Chem Chem Phys 16:5284

    Article  CAS  Google Scholar 

  41. Liu L, Zhao F, Liu J, Yang F (2013) Preparation of highly conductive cathodic membrane with graphene (oxide)/PPy and the membrane antifouling property in filtrating yeast suspensions in EMBR. J Memb Sci 437:99–107

    Article  CAS  Google Scholar 

  42. Mane RS, Chang J, Ham D, Pawar BN, Ganesh T, Cho BW, Lee JK, Han SH (2009) Dye-sensitized solar cell and electrochemical supercapacitor applications of electrochemically deposited hydrophilic and nanocrystalline tin oxide film electrodes. Curr Appl Phys 9:87–91

    Article  Google Scholar 

  43. Zhu Y, Xu X, Zhang L, Chen J, Cao Y (2012) High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO. Sol Energy Mater Sol Cells 97:83–88

    Article  CAS  Google Scholar 

  44. Lee TH, Do K, Lee YW, Jeon SS, Kim C, Ko J, Im S (2012) High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode. J Mater Chem 22:21624

    Article  CAS  Google Scholar 

  45. Bi H, Cui H, Lin T, Huang F (2015) Graphene wrapped copper–nickel nanospheres on highly conductive graphene film for use as counter electrodes of dye-sensitized solar cells. Carbon 91:153–160

    Article  CAS  Google Scholar 

  46. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46:3457–3466

    Article  CAS  Google Scholar 

  47. Zhang J, Ma M, Tang Q, Yu L (2016) Multistep electrochemical deposition of hierarchical platinum alloy counter electrodes for dye-sensitized solar cells. J Power Sources 303:243–249

    Article  CAS  Google Scholar 

  48. Liao Y, Pan K, Wang L, Pan Q, Zhou W, Miao X, Fu H (2013) Facile synthesis of high-crystallinity graphitic carbon/Fe3C nanocomposites as counter electrodes for high-efficiency dye-sensitized solar cells. ACS Appl Mater 5:3663–3670

    Article  CAS  Google Scholar 

  49. Xiao Y, Wang C, Han G (2015) Effects of thiourea concentration on electrocatalytic performances of nickel sulfide counter electrodes for use in dye-sensitized solar cells. Mater Res Bull 61:326–332

    Article  CAS  Google Scholar 

  50. Chang Q, Ma Z, Wang J, Yan Y, Shi W, Chen Q (2015) Graphene nanosheets@ZnO nanorods as three-dimensional high efficient counter electrodes for dye sensitized solar cells. Electrochim Acta 151:459–466

    Article  CAS  Google Scholar 

  51. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH (2013) 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chemie - Int Ed 52:9210–9214

    Article  CAS  Google Scholar 

  52. Wang H, Wei W, Hu YH (2014) NiO as an efficient counter electrode catalyst for dye-sensitized solar cells. Top Catal 57:607–611

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Hosseini, S.R. & Kazemi, Z. Electrophoretic preparation of graphene-iron oxide nanocomposite as an efficient Pt-free counter electrode for dye-sensitized solar cell. J Solid State Electrochem 22, 245–253 (2018). https://doi.org/10.1007/s10008-017-3741-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3741-x

Keywords

Navigation