Skip to main content

Advertisement

Log in

A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The integration of a battery-type electrode and of a capacitor-type electrode in a single device by proper design is an effective strategy in developing energy storage devices with high energy and power densities. Herein, we present a battery-supercapacitor hybrid device using metallic zinc as anode, a biodegradable ionic liquid (IL) as electrolyte, and graphite as cathode. The recently developed choline acetate ([Ch]OAc) biodegradable IL-based electrolyte enables reversible deposition/stripping of Zn(II). Spongy-like Zn with a high surface area is obtained, which allows fast charge/discharge at high rates. The adsorption/desorption of ions on the surface of the graphite cathode and intercalation/deintercalation of anions into/from the graphite layers occur at the graphite cathode. Raman spectra and X-ray photoelectron reveal the intercalation of IL into and the adsorption of IL on the graphite. Highly reversible adsorption/desorption of ions on the surface of the graphite electrodes in the [Ch]OAc-based electrolyte was demonstrated by a symmetric cell. The Zn/graphite hybrid device delivers an energy density of 53 Wh kg−1 at a power density of ~ 145 W kg−1 and 42 Wh kg−1 at ~ 400 W kg−1. The hybrid device also exhibits a long cycle life with ∼ 86% specific capacitance retained after 1000 cycles at a current density of 0.5 A g−1. The combination of well-available zinc, inexpensive graphite, and a biodegradable IL electrolyte in a cell could open new avenues for sustainable energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536

    Article  Google Scholar 

  2. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    Article  CAS  Google Scholar 

  3. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  4. Cabrera-Castillo E, Niedermeier F, Jossen A (2016) Calculation of the state of safety (SOS) for lithium ion batteries. J Power Sources 324:509–520

    Article  CAS  Google Scholar 

  5. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 1600539

  6. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790

    Article  CAS  Google Scholar 

  7. Aravindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba Rao GV, Chowdari BVR (2011) Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. J Power Sources 196:8850–8854

    Article  CAS  Google Scholar 

  8. Vijayan S, Kirubasankar B, Pazhamalai P, Solarajan AK, Angaiah S (2017) Electrospun Nd3+-doped LiMn2O4 nanofibers as high-performance cathode material for Li-ion capacitors. ChemElectroChem DOI. doi:10.1002/celc.201700161

  9. Aravindan V, Chuiling W, Reddy MV, Rao GVS, Chowdari BVR, Madhavi S (2012) Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors. Phys Chem Chem Phys 14:5808–5814

    Article  CAS  Google Scholar 

  10. Flora XH, Ulaganathan M, Babu RS, Rajendran S (2012) Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications. Ionics 18:731–736

    Article  CAS  Google Scholar 

  11. Aswathy R, Kesavan T, Kumaran KT, Ragupathy P (2015) Octahedral high voltage LiNi0.5Mn1.5O4 spinel cathode: enhanced capacity retention of hybrid aqueous capacitors with nitrogen doped graphene. J Mater Chem A 3:12386–12395

    Article  CAS  Google Scholar 

  12. Kirubasankar B, Murugadoss V, Angaiah S (2017) Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv 7:5853–5862

    Article  CAS  Google Scholar 

  13. Arun N, Jain A, Aravindan V, Jayaraman S, Chui Ling W, Srinivasan MP, Madhavi S (2015) Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy 12:69–75

    Article  CAS  Google Scholar 

  14. Kumar M, Subramania A, Balakrishnan K (2014) Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim Acta 149:152–158

    Article  CAS  Google Scholar 

  15. Zuo W, Wang C, Li Y, Liu J (2015) Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: a case study of CNTs//Li4Ti5O12. Sci Rep 5:7780

    Article  CAS  Google Scholar 

  16. Hu X, Deng Z, Suo J, Pan Z (2009) A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor. J Power Sources 187:635–639

    Article  CAS  Google Scholar 

  17. Liu X, Jung H-G, Kim S-O, Choi H-S, Lee S, Moon JH, Lee JK (2013) Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors. Sci Rep 3:3183

    Article  Google Scholar 

  18. Kolathodi MS, Palei M, Natarajan TS (2015) Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J Mater Chem A 3:7513–7522

    Article  CAS  Google Scholar 

  19. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  20. Perret P, Khani Z, Brousse T, Bélanger D, Guay D (2011) Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochim Acta 56:8122–8128

    Article  CAS  Google Scholar 

  21. Kim D, Kang S-H, Slater M, Rood S, Vaughey JT, Karan N, Balasubramanian M, Johnson CS (2011) Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 1:333–336

    Article  CAS  Google Scholar 

  22. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517

    Article  CAS  Google Scholar 

  23. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors—progress and prospects. Electrochim Acta 101:109–129

    Article  CAS  Google Scholar 

  24. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  25. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899

    Article  CAS  Google Scholar 

  26. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  27. Mousavi MPS, Wilson BE, Kashefolgheta S, Anderson EL, He S, Bühlmann P, Stein A (2016) Ionic liquids as electrolytes for electrochemical double-layer capacitors: structures that optimize specific energy. ACS Appl Mater Interfaces 8:3396–3406

    Article  CAS  Google Scholar 

  28. MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, Ohno H, Watanabe M, Yan F, Zheng W, Zhang S, Zhang J (2016) Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater 1:15005

    Article  CAS  Google Scholar 

  29. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  30. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 1:16119

    Article  CAS  Google Scholar 

  31. Liu Z, Pulletikurthi G, Endres F (2016) A Prussian blue/zinc secondary battery with a bio-ionic liquid–water mixture as electrolyte. ACS Appl Mater Interfaces 8:12158–12164

    Article  CAS  Google Scholar 

  32. Gu P, Zheng M, Zhao Q, Xiao X, Xue H, Pang H (2017) Rechargeable zinc-air batteries: a promising way to green energy. J Mater Chem A 5:7651–7666

    Article  CAS  Google Scholar 

  33. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z (2017) Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv Mater 29:1604685

    Article  Google Scholar 

  34. Li Y, Gong M, Liang Y, Feng J, Kim J-E, Wang H, Hong G, Zhang B, Dai H (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4:1805

    Article  Google Scholar 

  35. Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, Rolison DR (2017) Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356:415–418

    Article  CAS  Google Scholar 

  36. Yoo HD, Han S-D, Bayliss RD, Gewirth AA, Genorio B, Rajput NN, Persson KA, Burrell AK, Cabana J (2016) “Rocking-chair”-type metal hybrid supercapacitors. ACS Appl Mater Interfaces 8:30853–30862

    Article  CAS  Google Scholar 

  37. Kar M, Winther-Jensen B, Forsyth M, MacFarlane DR (2013) Chelating ionic liquids for reversible zinc electrochemistry. Phys Chem Chem Phys 15:7191–7197

    Article  CAS  Google Scholar 

  38. Liu Z, Zein El Abedin S, Endres F (2013) Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures. Electrochim Acta 89:635–643

    Article  CAS  Google Scholar 

  39. Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F (2016) Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew Chem Int Ed 55:2889–2893

    Article  CAS  Google Scholar 

  40. Periyapperuma K, Zhang Y, MacFarlane DR, Forsyth M, Pozo-Gonzalo C, Howlett PC (2017) Towards higher energy density redox-flow batteries: imidazolium ionic liquid for Zn electrochemistry in flow environment. ChemElectroChem 4:1051–1058

    Article  CAS  Google Scholar 

  41. Dilasari B, Jung Y, Kwon K (2017) Effect of water on the stability of zinc in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. J Ind Eng Chem 45:375–379

    Article  CAS  Google Scholar 

  42. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  43. Chen S, Wu G, Sha M, Huang S (2007) Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc 129:2416–2417

    Article  CAS  Google Scholar 

  44. Chen S, Kobayashi K, Miyata Y, Imazu N, Saito T, Kitaura R, Shinohara H (2009) Morphology and melting behavior of ionic liquids inside single-walled carbon nanotubes. J Am Chem Soc 131:14850–14856

    Article  CAS  Google Scholar 

  45. Im J, Cho SD, Kim MH, Jung YM, Kim HS, Park HS (2012) Anomalous thermal transition and crystallization of ionic liquids confined in graphene multilayers. Chem Commun 48:2015–2017

    Article  CAS  Google Scholar 

  46. Wang Y-L, Laaksonen A, Lu Z-Y (2013) Influence of ionic liquid film thickness on ion pair distributions and orientations at graphene and vacuum interfaces. Phys Chem Chem Phys 15:13559–13569

    Article  CAS  Google Scholar 

  47. Wang S, Li S, Cao Z, Yan T (2010) Molecular dynamic simulations of ionic liquids at graphite surface. J Phys Chem C 114:990–995

    Article  CAS  Google Scholar 

  48. Wang Y-L, Laaksonen A (2014) Interfacial structure and orientation of confined ionic liquids on charged quartz surfaces. Phys Chem Chem Phys 16:23329–23339

    Article  CAS  Google Scholar 

  49. Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M, Angell M, Chen C, Yang J, Hwang B-J, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:324–328

    Article  CAS  Google Scholar 

  50. Wang X, Fulvio PF, Baker GA, Veith GM, Unocic RR, Mahurin SM, Chi M, Dai S (2010) Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem Commun 46:4487–4489

    Article  CAS  Google Scholar 

  51. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  52. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731

    Article  CAS  Google Scholar 

  53. Elbourne A, McLean B, Voïtchovsky K, Warr GG, Atkin R (2016) Molecular resolution in situ imaging of spontaneous graphene exfoliation. J Phys Chem Letters 7:3118–3122

    Article  CAS  Google Scholar 

  54. Liu Z, El Abedin SZ, Endres F (2015) Raman and FTIR spectroscopic studies of 1-ethyl-3-methylimidazolium trifluoromethylsulfonate, its mixtures with water and the solvation of zinc ions. ChemPhysChem 16:970–977

    Article  CAS  Google Scholar 

  55. Hurisso BB, Lovelock KRJ, Licence P (2011) Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies. Phys Chem Chem Phys 13:17737–17748

    Article  CAS  Google Scholar 

  56. Blyth RIR, Buqa H, Netzer FP, Ramsey MG, Besenhard JO, Golob P, Winter M (2000) XPS studies of graphite electrode materials for lithium ion batteries. Appl Surf Sci 167:99–106

    Article  CAS  Google Scholar 

  57. Briggs D, Beamson G (1993) XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers. Anal Chem 65:1517–1523

    Article  CAS  Google Scholar 

  58. Briggs D, Beamson G (1992) Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers. Anal Chem 64:1729–1736

    Article  CAS  Google Scholar 

  59. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  60. Shapouri Ghazvini M, Pulletikurthi G, Lahiri A, Endres F (2016) Electrochemical and spectroscopic studies of zinc acetate in 1-ethyl-3-methylimidazolium acetate for zinc electrodeposition. ChemElectroChem 3:598–604

    Article  Google Scholar 

  61. Quilès F, Burneau A (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib Spectrosc 18:61–75

    Article  Google Scholar 

  62. Cabaço MI, Besnard M, Danten Y, Coutinho JAP (2011) Solubility of CO2 in 1-butyl-3-methyl-imidazolium-trifluoro acetate ionic liquid studied by Raman spectroscopy and DFT investigations. J Phys Chem B 115:3538–3550

    Article  Google Scholar 

  63. Liu Z, Cui T, Lu T, Shapouri Ghazvini M, Endres F (2016) Anion effects on the solid/ionic liquid interface and the electrodeposition of zinc. J Phys Chem C 120:20224–20231

    Article  CAS  Google Scholar 

  64. Simons TJ, Torriero AAJ, Howlett PC, MacFarlane DR, Forsyth M (2012) High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: the effect of Zn2+ salt and water concentration. Electrochem Commun 18:119–122

    Article  CAS  Google Scholar 

  65. Shao Q, Tang J, Lin Y, Li J, Qin F, Yuan J, Qin L-C (2015) Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J Power Sources 278:751–759

    Article  CAS  Google Scholar 

  66. Lewandowski A, Olejniczak A, Galinski M, Stepniak I (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195:5814–5819

    Article  CAS  Google Scholar 

  67. Fu C, Kuang Y, Huang Z, Wang X, Yin Y, Chen J, Zhou H (2011) Supercapacitor based on graphene and ionic liquid electrolyte. J Solid State Electrochem 15:2581–2585

    Article  CAS  Google Scholar 

  68. Agiorgousis ML, Sun Y-Y, Zhang S (2017) The role of ionic liquid electrolyte in an aluminum–graphite electrochemical cell. ACS Energy Lett 2:689–693

    Article  CAS  Google Scholar 

  69. Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer H-W, Nowak S, Winter M, Placke T (2014) Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ Sci 7:3412–3423

    Article  CAS  Google Scholar 

  70. Ujjain SK, Sahu V, Sharma RK, Singh G (2015) High performance, all solid state, flexible supercapacitor based on ionic liquid functionalized graphene. Electrochim Acta 157:245–251

    Article  CAS  Google Scholar 

  71. Zhang F, Zhang T, Yang X, Zhang L, Leng K, Huang Y, Chen Y (2013) A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ Sci 6:1623–1632

    Article  CAS  Google Scholar 

  72. Ye L, Liang Q, Lei Y, Yu X, Han C, Shen W, Huang Z-H, Kang F, Yang Q-H (2015) A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. J Power Sources 282:174–178

    Article  CAS  Google Scholar 

  73. Zheng JP (2009) High energy density electrochemical capacitors without consumption of electrolyte. J Electrochem Soc 156:A500–A505

    Article  CAS  Google Scholar 

  74. Zheng JP (2003) The limitations of energy density of battery/double-layer capacitor asymmetric cells. J Electrochem Soc 150:A484–A492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the BMBF project LUZI (BMBF: 03SF0499A) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu or Frank Endres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, G., Cui, T. et al. A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite. J Solid State Electrochem 22, 91–101 (2018). https://doi.org/10.1007/s10008-017-3725-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3725-x

Keywords

Navigation