Skip to main content
Log in

Novel potential type electrochemical chiral recognition biosensor for amino acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel potential type electrochemical chiral biosensing system with unique capability of distinguishing and quantitating of tyrosine (Tyr) enantiomers by L-cysteic acid and left-handed chiral carbonaceous nanotubes (L-CCNT) modified glassy carbon electrode (L-Cys/L-CCNT/GCE) was first developed. The effect of sweep cycles of L-Cys and the kinds of L-CCNT on electrochemical chiral biosensing performance of L-Cys/L-CCNT/GCE were investigated. The electrochemical identification and quantitative determination of L- and D-tyrosine in their mixed solution were successfully achieved based on the different oxidation potential signals. The chiral structure of L-CCNT, the aromatic ring of Tyr, and also the intermolecular hydrogen bond between cysteic acid (CyA) and Tyr could possibly produce the difference in the free energy, which reflects as potential difference of L- and D-tyrosine. A good linear relationship between the potential, current, and different concentration ratios of L- and D-Tyr was obtained. Our present work realizes the simultaneous detection of Tyr enantiomers in their mixed solution based on the different potential signals, and it is of far-reaching significance in real electrochemical chiral biosensor study.

Construction of chiral recognition interface and the chiral biosensing mechanism for L-Tyr and D-Tyr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berthier D, Buffeteau T, Léger J, Oda R, Huc I (2002) From chiral counterions to twisted membranes. J Am Chem Soc 122:13486–13494

    Article  Google Scholar 

  2. Schröder T, Schmitz K, Niemeier N, Balaban TS, Krug HF, Schepers U, Bräse S (2007) Solid-phase synthesis, bioconjugation, and toxicology of novel cationic oligopeptoids for cellular drug delivery. Bioconjug Chem 18:342–354

    Article  Google Scholar 

  3. Uray G, Maier NM, Niederreiter KS, Spitaler MM (1998) Diphenylethanediamine derivatives as chiral selectors: VIII. Influence of the second amido function on the high-performance liquid chromatographic enantioseparation characteristics of (N-3,5-dinitrobenzoyl)-diphenylethanediamine based chiral stationary phases. J Chromatogr A 799:67–81

    Article  CAS  Google Scholar 

  4. Li M, Liu X, Jiang F, Guo LP, Yang L (2011) Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase. J Chromatogr A 1218:3725–3729

    Article  CAS  Google Scholar 

  5. Guo HS, Kim JM, Chang SM, Kim WS (2009) Chiral recognition of mandelic acid by l-phenylalanine-modified sensor using quartz crystal microbalance. Biosens Bioelectron 24:2931–2934

    Article  CAS  Google Scholar 

  6. Su WC, Zhang WG, Zhang S, Fan J, Yin X, Luo ML, Ng SC (2009) A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens Bioelectron 25:488–492

    Article  CAS  Google Scholar 

  7. Liang H, Ling T, Rick JF, Chou T (2005) Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine. Anal Chim Acta 542:83–89

    Article  CAS  Google Scholar 

  8. Bustos E, García JE, Bandala Y, Godínez LA, Juaristi E (2009) Enantioselective recognition of alanine in solution with modified gold electrodes using chiral PAMAM dendrimers G4.0. Talanta 78:1352–1358

    Article  CAS  Google Scholar 

  9. Pandey I, Kant R (2016) Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode. Biosens Bioelectron 77:715–724

    Article  CAS  Google Scholar 

  10. Guo DM, Huang YH, Chen C, Chen Y, Fu YZ (2014) A sensing interface for recognition of tryptophan enantiomers based on porous cluster-like nanocomposite films. New J Chem 38:5880–5885

    Article  CAS  Google Scholar 

  11. Guo LJ, Zhang Q, Huang YH, Han Q, Wang YH, Fu YZ (2013) The application of thionine–graphene nanocomposite in chiral sensing for tryptophan enantiomers. Bioelectrochemistry 94:87–93

    Article  CAS  Google Scholar 

  12. Yu LY, Liu Q, Wu XW, Jiang XY, Yu JG, Chen XQ (2015) Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube–chitosan composite modified glassy carbon electrode. RSC Adv 5:98020–98025

    Article  CAS  Google Scholar 

  13. Ou J, Zhu YH, Kong Y, Ma JF (2015) Graphene quantum dots/β-cyclodextrin nanocomposites: a novel electrochemical chiral interface for tryptophan isomer recognition. Electrochem Commun 60:60–63

    Article  CAS  Google Scholar 

  14. Gu XG, Tao YX, Pan Y, Deng LH, Bao LP, Kong Y (2015) DNA-inspired electrochemical recognition of tryptophan isomers by electrodeposited chitosan and sulfonated chitosan. Anal Chem 87:9481–9486

    Article  CAS  Google Scholar 

  15. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84:685–707

    Article  CAS  Google Scholar 

  16. Wang Y, Yin X, Shi M, Li W, Zhang L, Kong J (2006) Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective films coupled with silver-enhanced gold nanoparticles. Talanta 69:1240–1245

    Article  CAS  Google Scholar 

  17. Li XL, Tu XM, Zaric S, Welsher K, Seo WS, Zhao W, Dai HJ (2007) Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J Am Chem Soc 129:15770–15771

    Article  CAS  Google Scholar 

  18. Chen Y, Wei L, Wang B, Lim S, Ciuparu D, Zheng M, Chen J, Zoican C, Yang YH, Haller GL, Pfefferle LD (2007) Low-Defect, purified, narrowly (n,m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41. ACS Nano 1:327–336

    Article  CAS  Google Scholar 

  19. Yu YT, Qiu HB, Wu XW, Li HC, Li YS, Sakamoto Y, Inoue Y, Sakamoto K, Terasaki O, Che SA (2008) Synthesis and characterization of silica nanotubes with radially oriented mesopores. Adv Funct Mater 18:541–550

    Article  CAS  Google Scholar 

  20. Liu SH, Duan YY, Feng XJ, Yang J, Che SA (2013) Synthesis of enantiopure carbonaceous nanotubes with optical activit. Angew Chem Int Ed 52:6858–6862

    Article  CAS  Google Scholar 

  21. Yang SB, Feng XL, Wang XC, Müllen K (2011) Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew Chem Int Ed 50:5339–5343

    Article  CAS  Google Scholar 

  22. Wang CY, Wang ZX, Guan J, Hu XY (2006) Voltammetric determination of meloxicam in pharmaceutical formulation and human serum at glassy carbon electrode modified by Cysteic acid formed by electrochemical oxidation of L-cysteine. Sensors 6:1139–1152

    Article  CAS  Google Scholar 

  23. Brunetti B, Desimoni E (2009) Determination of theophylline at a cysteic acid modified glassy carbon electrode. Electroanalysis 21:772–778

    Article  CAS  Google Scholar 

  24. Fei S, Chen J, Yao S, Deng G, He D, Kuang Y (2005) Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal Biochem 339:29–35

    Article  CAS  Google Scholar 

  25. Spãtaru N, Sarada BV, Popa E, Tryk DA, Fujishima A (2001) Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal Chem 73:514–519

    Article  Google Scholar 

  26. Scholz F, Gulaboski R (2005) Gibbs energies of transfer of chiral anions across the interface water|chiral organic solvent determined with the help of three-phase electrodes. Faraday Discuss 129:169–177

    Article  CAS  Google Scholar 

  27. Chen Q, Zhou J, Han Q, Wang YH, Fu YZ (2012) Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Colloids Surf, B 92:130–135

    Article  CAS  Google Scholar 

  28. Sulaiman Y, Kataky R (2012) Chiral acid selectivity displayed by PEDOT electropolymerised in the presence of chiral molecules. Analyst 137:2386–2393

    Article  CAS  Google Scholar 

  29. Shamsi SA, Valle BC, Billiot F, Warner IM (2003) Polysodium n-undecanoyl-L-leucylvalinate: a versatile chiral selector for micellar electrokinetic chromatography. Anal Chem 75:379–387

    Article  CAS  Google Scholar 

  30. Agnew-Heard KA, Sánchez Peña M, Shamsi SA, Warner IM (1997) Studies of polymerized sodium n-undecylenyl-L-valinate in chiral micellar electrokinetic capillary chromatography of neutral, acidic, and basic compounds. Anal Chem 69:958–964

    Article  CAS  Google Scholar 

  31. Dalgliesh CE (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J Chem Soc 3940-3942

  32. Davankov VA (1997) The nature of chiral recognition: is it a three-point interaction. Chirality 9:99–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 21505031), colleges and universities science technology research project of Hebei Province (No. Z2015096) and the Natural Science Foundation of Hebei Province (No. B2016201018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufan Zhang or Huan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Yao, R., Wang, Z. et al. Novel potential type electrochemical chiral recognition biosensor for amino acid. J Solid State Electrochem 22, 41–49 (2018). https://doi.org/10.1007/s10008-017-3719-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3719-8

Keywords

Navigation