Skip to main content
Log in

Influence of surfactants on electrochemical growth of CdSe nanostructures and their photoelectrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cadmium selenide (CdSe) thin films were grown by electrochemical technique on fluorine-doped tin oxide (FTO)-coated conducting glass substrates in the presence of organic surfactants. The influence of organic surfactants like polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) on different physico-chemical properties and its subsequent impact on photoelectrochemical (PEC) performance of CdSe thin films have been investigated. It has observed that the organic surfactants play an important role in modifying the surface morphology of CdSe thin films. The compact grain like morphology of pure CdSe is tuned to interconnected nanofibrous network on addition of PEG and to sprouting nanorods like morphology on addition of PVP. Among these nanostructures, CdSe sprouting nanorods exhibits improved power conversion efficiency of 0.55% as compared to nanofibrous (0.24%) and granular CdSe (0.16%) nanostructures. It reveals the fourfold enhancement in the PEC performance on PVP-mediated growth which can be attributed to conversion of compact dense nanostructure to porous and relatively high surface area nanostructure. This work exemplifies the ability of organic surfactant to modulate the surface morphology of the electrodeposits and pinpoints the organic surfactant that gives rise to the suitable morphology for PEC solar cell application.

TOC: The morphology of CdSe nanostructure has successfully tuned with use of surfactants to enhance the photoelectrochemical solar cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Erata S, Ari M, Metina H (2008) Mater Chem Phy 111:114–120

    Article  Google Scholar 

  2. Khandelwal A, Jena D, Grebinski J, Hull K, Kuno M (2006) J Electron Mater 35:170–172

    Article  CAS  Google Scholar 

  3. Chang S, Hsiao Y, Li T (2014) J Electron Mater 43:3077–3081

    Article  CAS  Google Scholar 

  4. Zarghami V, Mohammad M, Fray D (2012) J Electron Mater 41:3050–3055

    Article  Google Scholar 

  5. Kurtz E, Schmidt M, Don B, Wachter S, Litvinov D, Gerthsen D (2001) J Cryst Growth 227:630–633

    Article  Google Scholar 

  6. Meteleva YU, Radychev N, Novikov G (2007) Inorg Mater 43:455–465

    Article  CAS  Google Scholar 

  7. Liu C, Wu P, Sun T, Dai L (2009) J Phys Chem C 113:14478–14481

    Article  CAS  Google Scholar 

  8. Shinde S, Dubal D, Ghodake G, Fulari V (2014) J Electroanal Chem 727:179–183

    Article  CAS  Google Scholar 

  9. Shinde S, Dubal D, Ghodake G, Lee D, Lohar G, Rath M, Fulari V (2014) Mater Lett 132:243–246

    Article  CAS  Google Scholar 

  10. Xue J, Shen Q, Yang F, Liang W, Liu X (2014) J Alloys Compd 607:163–168

    Article  CAS  Google Scholar 

  11. Inamdar A, Mujawar S, Ganesan V, Patil P (2008) Nanotechnology 19:325706–325713

    Article  CAS  Google Scholar 

  12. Shen C, Zhang X, Li H (2001) Mater Sci Eng B 84:265–270

    Article  Google Scholar 

  13. Fu J, Gao D, Xu Y, Xue D (2008) Electrochim Acta 53:54645468

    Article  Google Scholar 

  14. Shen CM, Zhang XG, Li HL (2005) Appl Surf Sci 240:34–41

    Article  CAS  Google Scholar 

  15. Devaraj S, Munichandraiah N (2007) J Electrochem Soc 154:A901–A909

    Article  CAS  Google Scholar 

  16. Vanalakar SA, Suryawanshi MP, Mali SS, Moholkar AV, Kim JY, Patil PS, Kim JH (2014) Curr App Phy 14:1669–1676

    Article  Google Scholar 

  17. Ghaemi M, Khosravi-Fard L, Neshati J (2005) J Power Sources 141:340–350

    Article  CAS  Google Scholar 

  18. Vanalakar SA, Mali SS, Jo EA, Kim JY, Kim JY, Patil PS, Kim JH (2014) Solid State Sci 36:41–46

    Article  CAS  Google Scholar 

  19. Vanalakar SA, Kamble AS, Shin SW, Mali SS, Agawane GL, Patil VL, Kim JY, Patil PS, Kim JH (2015) Sol Energy 122:1146–1153

    Article  CAS  Google Scholar 

  20. Lokhande CD, Lee EH, Jung KD, Joo OS (2005) Mater Chem Phys 93:399–403

    Article  CAS  Google Scholar 

  21. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627

    Article  CAS  Google Scholar 

  22. Pawar SM, Moholkar AV, Rajpure KY, Bhosale CH (2006) J Phys Chem Solids 67:2386–2391

    Article  CAS  Google Scholar 

  23. Lokhande C, Lee EH, Jung KD, Joo OS (2005) Mater Chem Phys 91:200–204

    Article  CAS  Google Scholar 

  24. Dobryszycki J, Biallozar S (2001) Corros Sci 43:1309–1319

    Article  CAS  Google Scholar 

  25. Vanalakar SA, Gang MG, Patil PS, Kim JY, Kim JH (2016) Indian J Eng Mater Sci 23:139–142

    Google Scholar 

  26. Vanalakar SA, Kim JH, Patil PS (2016) In: Thomas S (ed) Advanced polymeric materials: from macro- to nano-length scales, 1st edn. CRC Press, New Jerrcy

    Google Scholar 

  27. Lui X, Yang J, Wang L, Yang X, Lude L, Wang X (2000) Mater Sci Eng A 289:241–245

    Article  Google Scholar 

  28. Zhang Z, Zhao B, Hu L (1996) J Solid State Chem 121:105–110

    Article  CAS  Google Scholar 

  29. Tao D, Qian W, Huang Y, Wei F (2004) J Cryst Growth 271:353–357

    Article  CAS  Google Scholar 

  30. Goel A, Rani N (2012) Open J Inorg Chem 2:67–73

    Article  Google Scholar 

  31. Tan Y, Dai X, Li Y, Zhu D (2003) J Mater Chem 13:1069–1075

    Article  CAS  Google Scholar 

  32. Toshima N, Nakata K, Kitoh H (1997) Inorg Chim Acta 265:149–153

    Article  CAS  Google Scholar 

  33. Teranishi T, Miyake M (1998) Chem Mater 10:594–600

    Article  CAS  Google Scholar 

  34. Gudage YG, Deshpande NG, Sagade AA, Sharma RP, Pawar SM, Bhosale CH (2007) Bull Mater Sci 30:321–327

    Article  CAS  Google Scholar 

  35. Raut VS, Lokhande CD, Killedar VV (2017) J Mater Sci: Mater Electron 28:140–3150

    Google Scholar 

Download references

Acknowledgements

One of the authors B. B. Sinha is grateful to the Department of Science and Technology (DST), India for award of Inspire fellowship. One of the authors S. A. Vanalakar is thankful to the University Grant Commission (UGC), New Delhi, India for providing fellowships under Raman Fellowship for Post-Doc Research in USA scheme (File No. 5/155/2016 (IC)). This work was partly supported by the converging research center program funded by the Ministry of science, ICT and Future planning (2013K000407) and Human Resource Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (no. 20124010203180).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. B. Sinha or J. H. Kim.

Electronic supplementary material

ESM 1

(PDF 213 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, A.S., Patil, V.L., Sinha, B.B. et al. Influence of surfactants on electrochemical growth of CdSe nanostructures and their photoelectrochemical performance. J Solid State Electrochem 21, 2649–2653 (2017). https://doi.org/10.1007/s10008-017-3651-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3651-y

Keywords

Navigation