Skip to main content
Log in

Morphological Manipulation of Solvothermal Prepared CdSe Nanostructures by Controlling the Growth Rate of Nanocrystals as a Kinetic Parameter

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The morphological manipulation, structural characterization, and optical properties of different cadmium selenide (CdSe) nanostructures are reported. Two different CdSe nanostructures, i.e., nanorods and nanoparticles, were grown by controlling the concentration of precursors (i.e., cadmium nitrate and selenium dioxide) in ethanolamine solvent. By manipulating the kinetic parameter of the process (i.e., growth rate) under constant growth driving force (i.e., degree of supersaturation), the morphology of CdSe nanostructures can be tailored from nanorods to nanoparticles. The optical properties of CdSe nanostructures were investigated using ultraviolet–visible (UV-vis) spectroscopy. The absorption edge of the samples showed a blue-shift. CdSe nanostructures prepared under optimized conditions showed good microstructural and optical properties for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, Appl. Phys. A 91, 69 (2008).

    Article  CAS  Google Scholar 

  2. H. Zhang, D. Yang, X. Ma, Y. Ji, S. Li, and D. Que, Mater. Chem. Phys. 93, 65 (2005).

    Article  CAS  Google Scholar 

  3. P. Peng, D.J. Milliron, S.M. Hughes, J.C. Johnson, A.P. Alivisatos, and R.J. Saykally, Nano Lett. 5, 1809 (2005).

    Article  CAS  Google Scholar 

  4. N.C. Greenham, X. Peng, and A.P. Alivisatos, Phys. Rev. B 54, 17628 (1996).

    Article  CAS  Google Scholar 

  5. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, and M.G. Bawendi, Science 13, 314 (2000).

    Article  Google Scholar 

  6. V.L. Alivisatos, M.C. Colvin, and A.P. Schlamp, Nature 370, 354 (1994).

    Article  Google Scholar 

  7. J. Lee, J.H. Im, K.M. Huh, Y.K. Lee, and H. Shin, J. Nanosci. Nanotechnol. 10, 487 (2010).

    Article  CAS  Google Scholar 

  8. V.A. Fedorov, V.A. Ganshin, and Yu.N. Korkishko, Physica Status Solidi (A) Applied Research 126, K5 (1991).

  9. X. Peng, L. Manna, W. Yang, J. Wickham, Erik Scher, and A. Kadavanich, Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  10. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).

    Article  CAS  Google Scholar 

  11. L. Li, J. Walda, L. Manna, and A. Paul Alivisatos, Nano Lett. 2, 557 (2002).

    Article  CAS  Google Scholar 

  12. X. Liu, P. Peng, J. Ma, and W. Zheng, Mater. Lett. 63, 673 (2009).

    Article  CAS  Google Scholar 

  13. F. Xue, H. Li, Y. Zhu, Sh Xiong, X. Zhang, T. Wang, X. Liang, and Y. Qian, J. Solid State Chem. 182, 1396 (2009).

    Article  CAS  Google Scholar 

  14. D.J. Crouch, P. O’Brien, M.A. Malik, P.J. Skabara, and S.P. Wright, Chem. Commun. 12, 1454 (2003).

    Article  Google Scholar 

  15. J. Zhu, O. Palchik, S. Chen, and A. Gedanken, J. Phys. Chem. B 104, 7344 (2000).

    Article  CAS  Google Scholar 

  16. M.J. Bowers, J.R. McBride, and S.J. Rosenthal, J. Am. Chem. Soc. 127, 15378 (2005).

    Article  CAS  Google Scholar 

  17. K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology (New Jersey: Noyes, 2001), pp. 105–138.

    Google Scholar 

  18. G. Demazeau, J. Mater. Sci. 43, 2104 (2008).

    Article  CAS  Google Scholar 

  19. H. Wang, Z. Guo, and F. Du, Mater. Chem. Phys. 98, 422 (2006).

    Article  CAS  Google Scholar 

  20. Q. Yang, K. Tang, C. Wang, Y. Qian, and S. Zhang, J. Phys. Chem. B 106, 9227 (2002).

    Article  CAS  Google Scholar 

  21. S.H. Yu, Y.S. Wu, J. Yang, Z.H. Han, Y. Xie, Y.T. Qian, and X.M. Liu, Chem. Mater. 10, 2309 (1998).

    Article  CAS  Google Scholar 

  22. Y. Li, H. Liao, Y. Ding, Y. Fan, Y. Zhang, and Y. Qian, Inorg. Chem. 38, 1382 (1999).

    Article  CAS  Google Scholar 

  23. Z.X. Deng, L. Li, and Y. Li, Inorg. Chem. 42, 2331 (2003).

    Article  CAS  Google Scholar 

  24. Y. Xie, W.Z. Wang, and Y.T. Qian, J. Solid State Chem. 147, 82 (1999).

    Article  CAS  Google Scholar 

  25. Q. Wang, D. Pan, S. Jiang, X. Ji, L. An, and B.J. Jiang, Cryst. Growth 286, 83 (2006).

    Article  CAS  Google Scholar 

  26. J. Yang, Ch Zang, G. Wang, G. Xu, and X. Cheng, J. Alloys Compd. 495, 158 (2010).

    Article  CAS  Google Scholar 

  27. B. Li, Y. Xie, J. Huang, and Y. Qian, Adv. Mater. 11, 1456 (1999).

    Article  CAS  Google Scholar 

  28. X. Wang and Y. Li, Inorg. Chem. 45, 7522 (2006).

    Article  CAS  Google Scholar 

  29. A. Phuruangrat, T. Thongtem, and S. Thongtem, Matter. Lett. 63, 1538 (2009).

    Article  CAS  Google Scholar 

  30. U.K. Gautam, M. Rajamathi, F. Meldrum, P. Morgan, and R. Seshadri, Chem. Commun. 52, 629 (2001).

    Article  Google Scholar 

  31. H. Fan, P. Ju, and S. Ai, Sens. Actuators B: Chem. 149, 98 (2010).

    Article  Google Scholar 

  32. H. Fan, Y. Zhang, J. Liang, B. Xi, L. Luo, and Y. Qian, Chem. Lett. 35, 1212 (2006).

    Article  CAS  Google Scholar 

  33. H. Fan, J. Liang, Y. Zhang, M. Zhang, B. Xi, X. Wang, and Y. Qian, Solid State Sci. 10, 901 (2008).

    Article  CAS  Google Scholar 

  34. G. Socrates, Infrared Characteristics Group Frequencies: Table and Charts (New York: Wiley, 1994), pp. 327–330.

    Google Scholar 

  35. C.B. Murray, D.J. Norris, and M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarghami, V., Mohammadi, M. & Fray, D. Morphological Manipulation of Solvothermal Prepared CdSe Nanostructures by Controlling the Growth Rate of Nanocrystals as a Kinetic Parameter. J. Electron. Mater. 41, 3050–3055 (2012). https://doi.org/10.1007/s11664-012-2232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2232-1

Keywords

Navigation