Skip to main content
Log in

Nanocomposite TiO2-f-MWCNTs as durable support for Pt in polymer electrolyte fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Durability is a major issue and has been the growing focus of research for the successful commercialization of polymer electrolyte fuel cells (PEFCs). Corrosion of carbon support is one of the major forms of Pt/C degradation and affects cell performance during prolonged operation. In the present study, TiO2 nanoparticles are incorporated in functionalized multi-walled carbon nanotubes (MWCNTs) to form TiO2-f-MWCNT nanocomposite-supported Pt which improves the durability of PEFC. Pt/TiO2-f-MWCNT electrocatalyst with different compositions has been prepared by a colloidal method, and their morphological and microstructural properties were investigated. Optimum ratio of TiO2-f-MWCNT-supported Pt shows improved overall cell performance than that of f-MWCNT-supported Pt. Accelerated stress test (AST) shows Pt/TiO2-f-MWCNT electrocatalyst possesses superior electrochemical activity and long-term stability for oxygen reduction in relation to Pt/f-MWCNT. High activity and durability is observed for TiO2-f-MWCNTs as catalyst support through its interaction with Pt and retains more than 75% of the initial electrochemical activity in PEFCs even after 200 h of AST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kangasniemi KH, Condit DA, Jarvi TD (2004) Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J Electrochem Soc 151:E125–E132

    Article  CAS  Google Scholar 

  2. Ferreira PJ, Horn YS, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation. J Electrochem Soc 152:A2256–A2271

    Article  Google Scholar 

  3. Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159

    Article  CAS  Google Scholar 

  4. Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43:179–188

    Article  CAS  Google Scholar 

  5. Reiser CR, Bregoli L, Pattersin TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse current decay mechanism for fuel cells. Electrochem Solid-State Lett 8:A273–A276

    Article  CAS  Google Scholar 

  6. Wilson MS, Garzon HG, Sickafus KE, Gottesfeld S (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J Electrochem Soc 140:2872–2877

    Article  CAS  Google Scholar 

  7. Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566

    Article  CAS  Google Scholar 

  8. Tang H, Qi Z, Ramani M, Elter JF (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 158:1306–1312

    Article  CAS  Google Scholar 

  9. Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) Ex situ and in situ stability studies of PEMFC catalysts—effect of carbon type and humidification on degradation of the carbon. J Electrochem Soc 152:A2309–A2315

    Article  CAS  Google Scholar 

  10. Vinod Selvaganesh S, Selvarani G, Sridhar P, Pitchumani S, Shukla AK (2011) Durable electrocatalytic-activity of Pt–Au/C cathode in PEMFCs. Phys Chem Chem Phys 13:12623–12634

    Article  Google Scholar 

  11. Huang SY, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899

    Article  CAS  Google Scholar 

  12. Tintula KK, Sahu AK, Shahid A, Pitchumani S, Sridhar P, Shukla AK (2010) Mesoporous carbon and poly (3,4-ethylenedioxythiophene) composite as catalyst support for polymer electrolyte fuel cells. J Electrochem Soc 157:B1679–B1685

    Article  CAS  Google Scholar 

  13. Bessel CA, Laubernds K, Rodriguez NM, Baker RTK (2001) Graphite nanofibers as an electrode for fuel cell applications. J Phys Chem B 105:1115–1118

    Article  CAS  Google Scholar 

  14. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal 253:337–358

    Article  CAS  Google Scholar 

  15. Shanahan PV, Xu L, Liang C, Waje M, Dai S, Yan YS (2008) Graphitic mesoporous carbon as a durable fuel cell catalyst support. J Power Sources 185:423–427

    Article  CAS  Google Scholar 

  16. Vinod Selvaganesh S, Sridhar P, Pitchumani S, Shukla AK (2014) Pristine and graphitized-MWCNTs as durable cathode-catalyst supports for PEFCs. J Solid State Electrochem 18:1291–1305

    Article  Google Scholar 

  17. Shao YY, Yin GP, Gao YZ, Shi PF (2006) Durability study of Pt /C and Pt /CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097

    Article  CAS  Google Scholar 

  18. Shao YY, Yin GP, Zhang J, Gao YZ (2006) Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochim Acta 51:5853–5857

    Article  CAS  Google Scholar 

  19. Mohanapriya S, Tintula KK, Bhat SD, Pitchumani S, Sridhar P (2012) A novel multi-walled carbon nanotube (MWNT)-based nanocomposite for PEFC electrodes. Bull Mater Sci 35:297–303

    Article  CAS  Google Scholar 

  20. Li L, Xing Y (2006) Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J Electrochem Soc 153:A1823–A1828

    Article  CAS  Google Scholar 

  21. Kim KH, Oh HS, Kim H (2009) Use of a carbon nanocage as a catalyst support in polymer electrolyte membrane fuel cells. Electrochem Commun 11:1131–1134

    Article  Google Scholar 

  22. Iijima S (1991) Helical microtubules of graphitic carbon. Science 354:56–58

    CAS  Google Scholar 

  23. Steen E, Prinsloo FF (2002) Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts. Catal Today 71:327–334

    Article  Google Scholar 

  24. Liu Z, Lin X, Lee JY, Zhang W, Han M, Gan LM (2002) Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18:4054–4060

    Article  CAS  Google Scholar 

  25. Xia BY, Ding S, Wu HB, Wang X, Wen X (2012) Hierarchically structured Pt/CNT@ TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells. RSC Adv 2:792–796

    Article  CAS  Google Scholar 

  26. Kraemer SV, Wikander K, Lindbergh G, Lundblad A, Palmqvist AEC (2008) Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell. J Power Sources 180:185–190

    Article  Google Scholar 

  27. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  28. Brewer L (1968) Bonding and structures of transition metals. Science 161:115–122

    Article  CAS  Google Scholar 

  29. Jakšić MM (1984) Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochim Acta 29:1539–1550

    Article  Google Scholar 

  30. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong interactions in supported-metal catalysts. Science 211:1121–1125

    Article  CAS  Google Scholar 

  31. Neophytides SG, Murase K, Zafeiratos S, Papakonstantinou G, Paloukis FE, Krstajic NV, Jaksic MM (2006) Composite hypo-hyper-d-intermetallic and interionic phases as supported interactive electrocatalysts. J Phys Chem B 110:3030–3042

    Article  CAS  Google Scholar 

  32. Haarstrick A, Ku OM, Heinzle E (1996) TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ Sci Technol 30:817–824

    Article  CAS  Google Scholar 

  33. Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ (2001) Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J Power Sources 102:172–177

    Article  CAS  Google Scholar 

  34. De Luca L, Donato A, Santangelo S, Faggio G, Messina G, Donato N, Neri G (2012) Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites. Int J Hydr Energy 37:1842–1851

    Article  CAS  Google Scholar 

  35. Xing Y (2004) Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J Phys Chem B 108:19255–19259

    Article  CAS  Google Scholar 

  36. Selvarani G, Vinod Selvaganesh S, Krishnamurthy S, Kiruthika GVM, Sridhar P, Pitchumani S, Shukla AK (2009) A methanol-tolerant carbon-supported Pt−Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J Phys Chem C 113:7461–7468

    Article  CAS  Google Scholar 

  37. Liu SW, Yu JG, Mann S (2009) Synergetic codoping in fluorinated Ti1−xZrxO2 hollow microspheres. J Phys Chem C 113:10712–10717

    Article  CAS  Google Scholar 

  38. Hu GJ, Meng XF, Feng XY, Ding YF, Zhang SM, Yang MS (2007) Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J Mater Sci 42:7162–7170

    Article  CAS  Google Scholar 

  39. Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501

    Article  CAS  Google Scholar 

  40. Vinod Selvaganesh S, Selvarani G, Sridhar P, Pitchumani S, Shukla AK (2010) A durable PEFC with carbon-supported Pt–TiO2 cathode: a cause and effect study. J Electrochem Soc 157:B1000–B1007

    Article  Google Scholar 

  41. Guidong Y, Zheng J, Huahong S, Tiancun X, Zifeng Y (2010) Preparation of highly visible light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309

    Article  Google Scholar 

  42. Akhavan O, Azhimirad R, Safa S, Larijani MM (2010) Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents. J Mater Chem 20:7386–7392

    Article  CAS  Google Scholar 

  43. Li Y, Hwang DS, Lee NH, Kim SJ (2005) Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem Phys Lett 404:25–29

    Article  CAS  Google Scholar 

  44. Ren W, Ai Z, Jia L, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69:138–144

    Article  CAS  Google Scholar 

  45. Dhanasekaran P, Vinod Selvaganesh S, Bhat SD (2016) Nitrogen and carbon doped titanium oxide as an alternative and durable electrocatalyst support in polymer electrolyte fuel cells. J Power Sources 304(2016):360–372

    Article  CAS  Google Scholar 

  46. Xiao Q, Ouyang L (2009) Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature. Chem Eng J 148:248–253

    Article  CAS  Google Scholar 

  47. Zhou C, Wang H, Peng F, Liang J, Yu H, Yang J (2009) MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells. Langmuir 25:7711–7717

    Article  CAS  Google Scholar 

  48. Qin YH, Li Y, Lv RL, Wang TL, Wang WG, Wang CW (2015) Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support. J Power Sources 278:639–644

    Article  CAS  Google Scholar 

  49. Xia BY, Wang B, Wu HB, Liu Z, Wang X, Wen X, Lou (D) (2012) Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. J Mater Chem 22:16499–16505

    Article  CAS  Google Scholar 

  50. Eder D (2010) Carbon nanotube−inorganic hybrids. Chem Rev 110:1348–1385

    Article  CAS  Google Scholar 

  51. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    Article  CAS  Google Scholar 

  52. Dai L, Mau AWH (2000) Surface and interface control of polymeric biomaterials, conjugated polymers, and carbon nanotubes. J Phys Chem B 104:1891–1915

    Article  CAS  Google Scholar 

  53. Qu L, Zhang H, Zhu J, Dai L (2005) Template-free electrodeposition of multicomponent metal nanoparticles for region-specific growth of interposed carbon nanotube micropatterns. Nanotechnology 16:2111–2117

    Article  Google Scholar 

  54. Montero-Ocampo C, Vargas Garcia JR, Arce Estrada E (2013) Comparison of TiO2 and TiO2-CNT as cathode catalyst supports for ORR. Int J Electrochem Sci 8:12780–12800

    CAS  Google Scholar 

  55. Christensen PA, Curtis TP, Egerton TA (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl Catal B Environ 41:371–386

    Article  CAS  Google Scholar 

  56. Kannan R, Pillai VK (2009) Applications of carbon nanotubes in polymer electrolyte membrane fuel cells. J Indian Inst Sci 89:425–436

    CAS  Google Scholar 

  57. Dhanasekaran P, Vinod Selvaganesh S, Giridhar VV, Bhat SD (2016) Iron and nitrogen co-doped titania framework as hybrid catalyst support for improved durability in polymer electrolyte fuel cells. Int J Hydr Energy 41:18214–18220

    Article  CAS  Google Scholar 

  58. Kinoshita K, Lundquis JT, Stonehart P (1973) Potential cycling effects on platinum electrocatalyst surfaces. Electrochemistry 48:157–166

    CAS  Google Scholar 

  59. Avasarala B, Moore R, Haldar P (2010) Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim Acta 55:4765–4771

    Article  CAS  Google Scholar 

  60. Neophytides SG, Zafeiratos S, Papakonstantinou GD, Jaksic JM, Paloukis FE, Jaksic MM (2005) Extended brewer hypo–hyper-image-interionic bonding theory—I. Theoretical considerations and examples for its experimental confirmation. Int J Hydr Energy 30:131–147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. S. D. Bhat CSIR thanks grant (No. DU-MLP-0090) under CSIR-Young Scientist Award Scheme. Dr. S. Vinod Selvaganesh and Mr. P. Dhanasekaran gratefully acknowledge CSIR for Research Associateship. Authors thank the Director and the Head, PPMG, CECRI, for their support and encouragement. We also thank Mr. A. Rathishkumar, Senior Technical Officer, CECRI, for his help in TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Vinod Selvaganesh or Santoshkumar D. Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinod Selvaganesh, S., Dhanasekaran, P. & Bhat, S.D. Nanocomposite TiO2-f-MWCNTs as durable support for Pt in polymer electrolyte fuel cells. J Solid State Electrochem 21, 2997–3009 (2017). https://doi.org/10.1007/s10008-017-3628-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3628-x

Keywords

Navigation