Skip to main content

Advertisement

Log in

On the synthesis of RuSe oxygen reduction nano-catalysts for direct methanol fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen reduction reaction has a crucial role in energy conversion systems such as fuel cells. State-of-the-art Pt-based cathode catalysts suffer from low efficiency which is severely affected by poisoning of methanol fuel crossing the membrane that separates the electrodes and high cost. We have synthesized a non-platinum RuSe 3–15-nm in size catalysts using microwave irradiation technique, which produces nanomaterials at high efficiency and short time spans. Several Ru/Se atomic ratios of RuSe were prepared using both elemental Se powder and H2SeO3 as precursors. The structure and composition of the obtained materials were characterized using XRD, EDX, ICP-OES, and DSC/TGA. Electrochemical study of oxygen reduction reaction (ORR) on these catalysts was conducted using rotating disk electrode (RDE) technique, from which the Tafel slopes and exchanged current densities of ORR were calculated. The use of H2SeO3 as the Se source provides catalysts with controlled composition. All obtained materials show good electrocatalytic activity towards oxygen reduction and maintain high activity in the presence of high methanol contamination. A rigorous kinetic study of ORR on RuSe catalysts show that at Ru to Se ratio is 2 to 1, and the highest kinetic currents are attained. Stability tests at 0.4 V in strong acidic conditions and elevated temperatures, for over 600 hours, exhibit no degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Damjanovic A, Genshaw MA, Bockris JO (1966) Distinction between intermediates produced in main and side electrodic reactions. J Chem Phys 45:4057–4059

    Article  CAS  Google Scholar 

  2. Anastasijević NA, Vesović V, Adžić RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: part I. Theory J Electroanal Chem Interfacial Electrochem 229:305–316

    Article  Google Scholar 

  3. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  CAS  Google Scholar 

  4. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  CAS  Google Scholar 

  5. Rao MLB, Damjanovic A, Bockris JO (1963) Oxygen adsorption related to the unpaired D-electrons in transition metals. J Phys Chem 67:2508–2509

    Article  CAS  Google Scholar 

  6. Colón-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155:253–263

    Article  Google Scholar 

  7. Min M, Kim H (2016) Performance and stability studies of PtCr/C alloy catalysts for oxygen reduction reaction in low temperature fuel cells. Int J Hydrog Energy 41:17557–17566

    Article  CAS  Google Scholar 

  8. Du XX, He Y, Wang XX, Wang JN (2016) Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ Sci 9:2623–2632

    Article  CAS  Google Scholar 

  9. Asteazaran M, Bengió S, Triaca WE, Castro Luna AM (2014) Methanol tolerant electrocatalysts for the oxygen reduction reaction. J Appl Electrochem 44:1271–1278

    Article  CAS  Google Scholar 

  10. Liu H, Liu X, Li Y et al (2016) Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Res 9:3494–3503

    Article  CAS  Google Scholar 

  11. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and Electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J Phys Chem 99:4577–4589

    Article  CAS  Google Scholar 

  12. Lefèvre M, Dodelet J-P (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48:2749–2760

    Article  Google Scholar 

  13. Yao B, Li C, Ma J, Shi G (2015) Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction. Phys Chem Chem Phys 17:19538–19545

    Article  CAS  Google Scholar 

  14. Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  15. Türk K-K, Kruusenberg I, Mondal J et al (2015) Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. J Electroanal Chem 756:69–76

    Article  Google Scholar 

  16. Si Y, Chen C, Yin W, Cai H (2010) Methanol tolerant non-noble metal co-C-N catalyst for oxygen reduction reaction using urea as nitrogen source. Chinese J Chem Phys 23:331–335

    Article  CAS  Google Scholar 

  17. Zhao Y, Kamiya K, Hashimoto K, Nakanishi S (2015) Efficient bifunctional Fe/C/N electrocatalysts for oxygen reduction and evolution reaction. J Phys Chem C 119:2583–2588

    Article  CAS  Google Scholar 

  18. Zhou M, Wang H-L, Guo S (2016) Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem Soc Rev 45:1273–1307

    Article  CAS  Google Scholar 

  19. Stoerzinger KA, Risch M, Han B, Shao-Horn Y (2015) Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal 5:6021–6031

    Article  CAS  Google Scholar 

  20. Matsuzawa K, Kikuchi A, Ishihara A et al (2010) Electrocatalytic activity of ta compound thin film for oxygen reduction reaction. ECS Trans 28:3–10

    Article  CAS  Google Scholar 

  21. Jaegermann W, Pettenkofer C, Vante NA et al (1990) Chevrel phase type compounds: electronic, chemical and structural factors in oxygen reduction electrocatalysis. Berichte der Bunsen-Gesellschaft 94:513–520

    Article  CAS  Google Scholar 

  22. Alonso-Vante N, Fieber-Erdmann M, Rossner H et al (1997) The catalytic center of transition metal chalcogenides vis-a-vis the oxygen reduction reaction: an in situ electrochemical EXAFS study. J Phys IV 7:887–889

    CAS  Google Scholar 

  23. Alonso-Vante N, Malakhov IV, Nikitenko SG et al (2002) The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study. Electrochim Acta 47:3807–3814. doi:10.1016/S0013-4686(02)00351-1

    Article  CAS  Google Scholar 

  24. Neergat M, Leveratto D, Stimming U (2002) Catalysts for direct methanol fuel cells. Fuel Cells Weinheim, Ger 2:25–30

    Article  CAS  Google Scholar 

  25. Tritsaris GA, Norskov JK, Rossmeisl J (2011) Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochim Acta 56:9783–9788

    Article  CAS  Google Scholar 

  26. Neergat M, Gunasekar V, Singh RK (2011) Oxygen reduction reaction and peroxide generation on Ir, Rh, and their selenides—a comparison with Pt and RuSe. J Electrochem Soc 158:B1060–B1066

    Article  CAS  Google Scholar 

  27. Shukla AK, Raman RK (2003) Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells. Annu Rev Mater Res 33:155–168

    Article  CAS  Google Scholar 

  28. Vogel W, Le Rhun V, Garnier E, Alonso-Vante N (2001) Ru clusters synthesized chemically from dissolved carbonyl: in situ study of a novel electrocatalyst in the gas phase and in electrochemical environment. J Phys Chem B 105:5238–5243

    Article  CAS  Google Scholar 

  29. Zehl G, Bogdanoff P, Dorbandt I et al (2007) Carbon supported Ru-se as methanol tolerant catalysts for DMFC cathodes. Part I: preparation and characterization of catalysts. J Appl Electrochem 37:1475–1484

    Article  CAS  Google Scholar 

  30. Fiechter S, Dorbandt I, Bogdanoff P et al (2007) Surface modified ruthenium nanoparticles: structural investigation and surface analysis of a novel catalyst for oxygen reduction. J Phys Chem C 111:477–487

    Article  CAS  Google Scholar 

  31. Malakhov IV, Nikitenko SG, Savinova ER et al (2002) In situ EXAFS study to probe active centers of Ru chalcogenide electrocatalysts during oxygen reduction reaction. J Phys Chem B 106:1670–1676

    Article  CAS  Google Scholar 

  32. Dassenoy F, Vogel W, Alonso-Vante N (2002) Structural studies and stability of cluster-like RuxSey electrocatalysts. J Phys Chem B 106:12152–12157

    Article  CAS  Google Scholar 

  33. Ramaswamy N, Mukerjee S (2012) Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media. Adv Phys Chem:1–17

  34. Teller H, Krichevski O, Gur M et al (2015) Ruthenium phosphide synthesis and electroactivity toward oxygen reduction in acid solutions. ACS Catal 5:4260–4267

    Article  CAS  Google Scholar 

  35. Swanson HE, Gilfrich NT, GMU (1955) Standard X-ray diffraction powder patterns. Natl Bur Stand Circ 539:5:54

    Google Scholar 

  36. Shen M-Y, Chiao S-P, Tsai D-S et al (2009) Preparation and oxygen reduction activity of stable RuSex/C catalyst with pyrite structure. Electrochim Acta 54:4297–4304

    Article  CAS  Google Scholar 

  37. Urashima Y, Wakabayashi T, Masaki T, Terasaki Y (1974) Ruthenium, a new mineral from Horokanai, Hokkaido, Japan. Mineral J 7:438–444

    Article  CAS  Google Scholar 

  38. Lutz HD, Mueller B, Schmidt T, Stingl T (1990) Structure refinement of pyrite-type ruthenium disulfide, RuS2, and ruthenium diselenide, RuSe2. Acta Crystallogr Sect C Cryst Struct Commun C46:2003–2005

    Article  CAS  Google Scholar 

  39. Bard AJ., Faulkner LR (2001) Electrochemical methods, 2nd Editio. John Wiley & Sons, Inc.:340-344.

  40. Bron M, Bogdanoff P, Fiechter S et al (2001) Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction. J Electroanal Chem 500:510–517

    Article  CAS  Google Scholar 

  41. Nekooi P, Amini MK (2010) Effect of support type and synthesis conditions on the oxygen reduction activity of RuxSey catalyst prepared by the microwave polyol method. Electrochim Acta 55:3286–3294

    Article  CAS  Google Scholar 

  42. Lipkowsky J, Ross PN (1998) Electrocatalysis. WILEY-VCH Inc., pp 222–225

  43. Colmenares L, Jusys Z, Behm RJ (2007) Activity, selectivity, and methanol tolerance of Se-modified Ru/C cathode catalysts. J Phys Chem C 111:1273–1283

    Article  CAS  Google Scholar 

  44. Inukai J, Cao D, Wieckowski A et al (2007) In situ synchrotron X-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction. J Phys Chem C 111:16889–16894

    Article  CAS  Google Scholar 

  45. Yu K, Groom DJ, Wang X et al (2014) Degradation mechanisms of platinum nanoparticle catalysts in proton exchange membrane fuel cells: the role of particle size. Chem Mater 26:5540–5548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the Israeli ministry of infrastructure energy and water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Schechter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teller, H., Schechter, A. On the synthesis of RuSe oxygen reduction nano-catalysts for direct methanol fuel cells. J Solid State Electrochem 21, 3103–3111 (2017). https://doi.org/10.1007/s10008-017-3616-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3616-1

Keywords

Navigation