Skip to main content
Log in

Direct and indirect electrochemical oxidation of Indigo Carmine using PbO2 and TiRuSnO2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the electrocatalytic properties of PbO2 and TiRuSnO2 anodes for direct and indirect electrochemical oxidation of a synthetic solution containing Indigo Carmine (IC) were compared. The electrolysis was performed using an electrolytic flow cell with parallel-plate electrodes and the progresses of oxidation were monitored by UV-vis and COD measurements. The effects of several operating parameters such as electrode material, current intensity, initial dye concentration, and pH on the degradation rate and current efficiency were determined. Some economic considerations were also taken into account. With both electrodes, IC removal was satisfactory described by a pseudo-first-order kinetic and the rate constant increased with applied current, chloride concentration and decreased with initial IC concentration. During direct electrolysis, PbO2 provided a faster oxidation rate, higher current efficiency, and lower energy consumption than TiRuSnO2 anode. On the contrary, in the presence of 825 ppm of NaCl, the TiRuSnO2 anode that has higher electrocatalytic activity for chlorine evolution was more efficient than PbO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ge L, Moor K, Zhang B, He Y, Kim J-H (2014) Electron transfer mediation by aqueous C60 aggregates in H2O4/UV advanced oxidation of indigo carmine. 6:13579–13585

  2. Hooson J, Gaunt IF, Kiss IS, Grasso P, Butterworth KR (1975) Long-term toxicity of indigo carmine in mice. 13:167–176

  3. Brosillon S, Djelal H, Merienne N, Amrane A (2008) Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination 222:331–339

    Article  CAS  Google Scholar 

  4. Nishimoto R, Zhu Q, Miyamoto T, Sato T, Tu X, Aneksampant A, Fukushima M (2015) Monopersulfate oxidation of acid Orange 7 with an iron(III)-tetrakis(N-methylpyridinium-4-yl)porphyrin intercalated into the layers of montmorillonite and pillared clay. J Mol Catal A Chem 396:84–89

    Article  CAS  Google Scholar 

  5. Wawrzkiewicz M, Wiśniewska M, Gun'ko VM, Zarko VI (2015) Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide. Powder Technol 278:306–315

    Article  CAS  Google Scholar 

  6. Zhang G, Okajima I, Sako T (2016) Decomposition and decoloration of dyeing wastewater by hydrothermal oxidation. J Supercrit Fluids 112:136–142

    Article  CAS  Google Scholar 

  7. Wang H, Guo H, Wu Q, Zhou G, Yi C (2016) Effect of activated carbon addition on H2O2 formation and dye decoloration in a pulsed discharge plasma system. Vacuum 128:99–105

    Article  CAS  Google Scholar 

  8. Khayet M, Zahrim AY, Hilal N (2011) Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem Eng J 167:77–83

    Article  CAS  Google Scholar 

  9. Reed BE, Lin W, Matsumoto MR, Jensen JN (1997) Physicochemical processes. Water Env Res 69:444–462

    Article  CAS  Google Scholar 

  10. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367

    Article  Google Scholar 

  11. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641

    Article  CAS  Google Scholar 

  12. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199

    Article  CAS  Google Scholar 

  13. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  14. Brillas E, Sires I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    Article  CAS  Google Scholar 

  15. Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47:6816–6820

    Article  CAS  Google Scholar 

  16. Panizza M, Martinez-Huitle CA (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate—comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere 90:1455–1460

    Article  CAS  Google Scholar 

  17. Fernandes A, Santos D, Pacheco MJ, Ciríaco L, Lopes A (2014) Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. Appl Catal B-Environ 148–149:288–294

    Article  Google Scholar 

  18. Ammar S, Oturan MA, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E (2015) Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res 74:77–87

    Article  CAS  Google Scholar 

  19. Panizza M (2014) Anodic oxidation of benzoquinone using diamond anode. Environ Sci Pollut Res Int 21:8451–8456

    Article  CAS  Google Scholar 

  20. Elaoud SC, Panizza M, Cerisola G, Mhiri T (2011) Electrochemical degradation of sinapinic acid on a BDD anode. Desalination 272:148–153

    Article  CAS  Google Scholar 

  21. Mhemdi A, Oturan MA, Oturan N, Abdelhédi R, Ammar S (2013) Electrochemical advanced oxidation of 2-chlorobenzoic acid using BDD or Pt anode and carbon felt cathode. J Electroanal Chem 709:111–117

    Article  CAS  Google Scholar 

  22. Labiadh L, Barbucci A, Carpanese MP, Gadri A, Ammar S, Panizza M (2016) Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes. J Electroanal Chem 766:94–99

    Article  CAS  Google Scholar 

  23. Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257

    Article  CAS  Google Scholar 

  24. Tahar NB, Savall A (1999) Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations. J Appl Electrochem 29:277–283

    Article  CAS  Google Scholar 

  25. Sirés I, Brillas E, Cerisola G, Panizza M (2008) Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes. J Electroanal Chem 613:151–159

    Article  Google Scholar 

  26. Saracco G, Solarino L, Specchia V, Maja M (2001) Electrolytic abatement of biorefratory organics by combining bulk and electrode oxidation processes. Chem Eng Sci 56:1571–1578

    Article  CAS  Google Scholar 

  27. Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (1999) Electrochemical incineration of glucose as a model organic substrate. I Role of the electrode material J Electrochem Soc 146:2175–2179

    Article  CAS  Google Scholar 

  28. Martinez-Huitle CA, Ferro S, De Battisti A (2004) Electrochemical incineration of oxalic acid—role of electrode material. Electrochim Acta 49:4027–4034

    Article  CAS  Google Scholar 

  29. Martinez-Huitle CA, Panizza M (2011) Application of PbO2 anodes for electrochemical wastewater treatment. In: V.G. Singh (Ed.) Applied electrochemistry, Nova Science Publisher, pp. 269–300

  30. Panizza M, Barbucci A, Ricotti R, Cerisola G (2007) Electrochemical degradation of methylene blue. Sep Pur Technol 54:382–387

    Article  CAS  Google Scholar 

  31. Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25:23–28

    Article  CAS  Google Scholar 

  32. Iniesta J, Gonzalez-Garcia J, Exposito E, Montiel V, Aldaz A (2001) Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Res 35:3291–3300

    Article  CAS  Google Scholar 

  33. Panizza M, Cerisola G (2003a) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48:1515–1519

    Article  CAS  Google Scholar 

  34. Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA (2000) Testing an electrochemical method for treatment of textile dye wastewater. Waste Manag 20:569–574

    Article  CAS  Google Scholar 

  35. Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2008) Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. J Hazard Mater 156:170–177

    Article  CAS  Google Scholar 

  36. Canizares P, Lobato J, Paz R, Rodrigo MA, Saez C (2007) Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere 67:832–838

    Article  CAS  Google Scholar 

  37. Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G (1997) Olive oil wastewater treatment with the use of an electrolysis system. Bioresour Technol 61:163–170

    Article  CAS  Google Scholar 

  38. Panizza M, Cerisola G (2006) Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes. Water Res 40:1179–1184

    Article  CAS  Google Scholar 

  39. Iniesta J, Exposito E, Gonzalez-Garcia J, Montiel V, Aldaz A (2002) Electrochemical treatment of industrial wastewater containing phenols. J Electrochem Soc 149:D57–D62

    Article  CAS  Google Scholar 

  40. Labiadh L, Barbucci A, Cerisola G, Gadri A, Ammar S, Panizza M (2015) Role of anode material on the electrochemical oxidation of methyl orange. J Solid State Electrochem 19:3177–3183

    Article  CAS  Google Scholar 

  41. Belhadj Tahar N, Savall A (1998) Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta / PbO2 anode. 145:3427–3434

  42. Vercesi GP, Rolewicz J, Comninellis C, Hinder J (1991) Characterization of dsa-type oxygen evolving electrodes. Choice of base metal. ChemInform 176:31–47

    CAS  Google Scholar 

  43. Forti JC, Ribeiro J, Lanza MRV, de Andrade AR, Bertazzoli R (2010) Electrochemical characterization of DSA®-type electrodes using niobium substrate. 1:129–138

  44. Mattos-Costa FI, de Lima-Neto P, Machado SAS, Avaca LA (1998) Characterisation of surfaces modified by sol-gel derived RuxIr1−xO2 coatings for oxygen evolution in acid medium. Electrochim Acta 44:1515–1523

    Article  CAS  Google Scholar 

  45. Panizza M, Cerisola G (2003b) Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 1. Cyclic voltammetry and potential step experiments. 48:3491–3497

  46. Foti G, Gandini D, Comninellis C, Perret A, Haenni W (1999) Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes. 2:228–230

  47. Gherardini L, Michaud PA, Panizza M, Comninellis C, Vatistas N (2001) Electrochemical oxidation of 4-chlorophenol for wastewater treatment. Definition of normalized current efficiency. 148:D78

  48. Quiroz MA, Reyna S, Martinez-Huitle CA, Ferro S, De Battisti A (2005) Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Appl Catal B-Environ 59:259–266

    Article  CAS  Google Scholar 

  49. Samet Y, Elaoud SC, Ammar S, Abdelhedi R (2006) Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes. J Hazard Mater 138:614–619

    Article  CAS  Google Scholar 

  50. Pereira GF, Rocha-Filho RC, Bocchi N, Biaggio SR (2015) Electrochemical degradation of the herbicide picloram using a filter-press flow reactor with a boron-doped diamond or β-PbO2 anode. 179:588–598

  51. Dirany A, Sirés I, Oturan N, Oturan MA (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 81:594–602

    Article  CAS  Google Scholar 

  52. Panizza M, Cerisola G (2004) Influence of anode material on the electrochemical oxidation of 2-naphthol: part 2. Bulk electrolysis experiments. Electrochim Acta 49:3221–3226

    Article  CAS  Google Scholar 

  53. Panizza M, Cerisola G (2007) Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl Catal B-Environ 75:95–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge University of Gabes (Tunisia) for providing partial financial support to accomplish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panizza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labiadh, L., Barbucci, A., Carpanese, M.P. et al. Direct and indirect electrochemical oxidation of Indigo Carmine using PbO2 and TiRuSnO2 . J Solid State Electrochem 21, 2167–2175 (2017). https://doi.org/10.1007/s10008-017-3559-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3559-6

Keywords

Navigation