Skip to main content
Log in

Magnetic impurity effects on self-discharge capacity, cycle performance, and rate capability of LiFePO4/C composites

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Battery manufacturers pay a great deal of attention to the reproducibility of LiFePO4/C composites. Poor reproducibility of self-discharge capacity, cycle performance, and rate capability seriously affects the balance of battery packs. We have found that the above properties strongly depend on the level of magnetic impurities present. The existence of trace magnetic impurities produced from a sintering process can significantly poison the self-discharge capacity of LiFePO4/C materials. In this work, the magnetic impurity-removed LiFePO4/C composites exhibited the best discharge capacity of 158 mAh g−1 at 0.2 C and excellent cycle performance with a capacity retention of 92% after 500 cycles at 5 C. Self-discharge experiments showed that the purified LiFePO4/C maintains 97% residual capacity after a week at 0.5 C, which is better than the others containing magnetic impurities. We applied a new alternative current magnetic susceptibility device to quantify the impact of magnetic impurities on LiFePO4/C composites. This method is rapid, effective, inexpensive, and nondestructive, which makes it a useful quality control tool for practical lithium battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1994) Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc 144:1188–1194

  2. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium. Nature 1:123–128

  3. Xu YN, Chung SY, Bloking JT, Chiang YM, Ching WY (2004) Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem Solid-State Lett 7:A131–A134

  4. Herle PS, Ellis B, Coombs N (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Mater 3:147–152

  5. Cho YD, Fey GTK, Kao HM (2008) Physical and electrochemical properties of La-doped LiFePO4-C composites as cathode materials for lithium-ion batteries. J Solid State Electrochem 12:815–823

  6. Choi D, Kumta PN (2007) Surfactant based sol–gel approach to nanostructured LiFePO 4 for high rate Li-ion batteries. J Power Sources 163:1064–1069

  7. Fey GTK, Chen YG, Kao HM (2009) Electrochemical properties of LiFePO4 prepared via ball-milling. J Power Sources 189:169–178

  8. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. in: Proc 196th ECS Meeting, Honolulu, HI, United States, Abstract #127. http://www.electrochem.org/196; https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=DqIaXaQAAAAJ&citation_for_view=DqIaXaQAAAAJ:9yKSN-GCB0IC

  9. Huang H, Yin SC, Nazarz LF (2001) Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. Solid-State Lett 4:A170–A172

  10. Fey GTK, Lu TL (2008) Morphological Characterization of LiFePO4/C Composite Cathode Materials Synthesized via aCarboxylic Acid Route. J Power Sources 178:807–814

  11. Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosatia B (2002) A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode. Electrochem Solid-State Lett 5:A47–A50

  12. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

  13. Bini M, Mozzati MC, Galinetto P, Capsoni D, Ferrari S, Grandi MS, Massarotti V (2009) J Solid State Chem 182:1972–1982

    Article  CAS  Google Scholar 

  14. Nakamura T, Shima Y, Matsui H, Yamada Y, Hashimoto S, Miyauchi H, Koshiba N (2010) J Electrochem Soc 157:A544–A549

    Article  CAS  Google Scholar 

  15. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Solid State Ionics 179:16–23

    Article  CAS  Google Scholar 

  16. Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Mater Sci Eng B 129:232–244

    Article  Google Scholar 

  17. Ait-Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) J Electrochem Soc 153:A1692–A1701

    Article  CAS  Google Scholar 

  18. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Ionics 14:271–278

    Article  CAS  Google Scholar 

  19. Wang GX, Bewlay S, Needham SA, Liu HK, Liu RS, Drozd VA, Lee JF, Chen JM (2006) J Electrochem Soc 153:A25–A31

    Article  CAS  Google Scholar 

  20. Ravet N, Gauthier M, Zaghib K, Goodenough JB, Mauger A, Gendron F, Julien CM (2007) Chem Mater 19:2595–2602

    Article  CAS  Google Scholar 

  21. Kuo HT, Chan TS, Bagkar NC, Liu RS, Shen CH, Shy DS, Xing XK, Lee JF (2009) Electrochem Solid-State Lett 12:A111–A114

    Article  CAS  Google Scholar 

  22. Yamada A, Takei Y, Koizumi H, Sonoyam N, Kanno R (2006) Chem Mater 18:804–813

    Article  CAS  Google Scholar 

  23. Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Magnetic studies of the carbothermal effect on LiFePO4. Phys Stat Sol (a)203:R1-R3. http://onlinelibrary.wiley.com/doi/10.1002/pssa.200521452/full

  24. Van der Pauw LJ (1958) A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape. Philips Tech Rev 20:220–224

  25. González CA, Rubinsky B (2005) Frequency dependence of phase shift in edema: a theoretical study with magnetic induction. in: Proc 27th IEEE Engineering in Medicine and Biology Annual Conference, Shanghai, China, pp 3518–3521. http://www.embs.org/conferences-meetings/past-conferences/annual-internationalconferences/

  26. Axmann P, Stinner C, Arnold G, Wohlfahrt-Mehrens M (2006) in:Proc 210th ECS Meeting, Cancun, Mexico, Abstract #193

  27. Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ (2009) LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices. Adv Mater 21:2710–2714

  28. Yang Y, Liao XZ, Ma ZF, Wang BF, He L, He YS (2009) Superior high-rate cycling performance of LiFePO 4/C-PPy composite at 55 °C. Electrochem Commun 11:1277–1280

  29. Lin YB, Lin Y, Zhou T, Zhao G, Huang Y, Huang Z (2013) Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles. J Power Sources 226:20–26

  30. Yin Y, Gao M, Ding J, Liu Y, Shen L, Pan H (2011)A carbon-free LiFePO4 cathode material of high-rate capability prepared by a mechanical activationmethod. J Alloys Comp 509:10161–10166

  31. Liu H, Xi J, Wang K (2008) Synthesis and characterization of LiFePO4/(C + Fe2P) composite cathodes. Solid State Ionics 179:1768–1771

  32. Evans BJ (1975) Experimental studies of the electrical conductivity and phase transition in Fe3O4. AIP Conference Proceedings 24:73–78

  33. Song SW, Reade RP, Kostecki R, Striebe KA (2006) Electrochemical studies of the LiFePO4 thin films prepared with pulsed laser deposition. J Electrochem Soc 153:A12–A19

  34. Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokaw H, Fujitania S (2007) Study of LiFePO4 by Cyclic Voltammetry. J Electrochem Soc 154:A253–A257

  35. Dahn JR, Jiang J, Moshurchak LM, Fleischauer MD, Buhrmester C, Krause LJ (2005) High-Rate Overcharge Protection of LiFePO4-Based Li-Ion Cells Using the Redox Shuttle Additive 2,5-Ditertbutyl-1,4-dimethoxybenzene. J Electrochem Soc 152:A1283–A1289

  36. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering. Electrochim Acta 54:4631–4637

  37. Liu H, Wang GX, Wexler D, Wang JZ, Liu HK (2008) Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochem Commun 10:165–169

  38. Liu J, Jiang R, Wang X, Huang T, Yu A (2009) The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values. J Power Sources 194:536–540

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ting-Kuo Fey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, KP., Fey, G.TK., Lin, YC. et al. Magnetic impurity effects on self-discharge capacity, cycle performance, and rate capability of LiFePO4/C composites. J Solid State Electrochem 21, 1767–1775 (2017). https://doi.org/10.1007/s10008-017-3527-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3527-1

Keywords

Navigation