Skip to main content
Log in

Na3V2(PO4)3/C/Ag nanocomposite materials for Na-ion batteries obtained by the modified Pechini method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposite materials, Na3V2(PO4)3/C and Na3V2(PO4)3/C/Ag, were synthesized by a modified Pechini method. Their properties were characterized with the use of the X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, elemental analysis, Raman spectroscopy, impedance spectroscopy, and charge-discharge tests as cathode materials for sodium-ion batteries. The discharge capacity of Na3V2(PO4)3/C obtained at 600 °C was 116.1 and 75 mAh g−1 at a current density of 11 (0.1 C) and 110 mA g−1 (1 С) in the potential range of 2.7–3.8 V. The high capacity values for fast charge/discharge were achieved as a result of heat treatment by two steps and incorporation of appropriate amount of silver particles into Na3V2(PO4)3/C nanocomposite. The discharge capacities of thus obtained Na3V2(PO4)3/C with 0.2 wt% of Ag were 117.2, 112.5, and 83.5 mAh g−1 at the current densities of 11, 110, and 880 mA g−1. This experimental evidence reveals the great potential of NVP/C/Ag synthesized by the modified Pechini method as cathode materials for the production of sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  2. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  CAS  Google Scholar 

  3. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  4. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  5. Sudworth JL (1984) The sodium/sulphur battery. J Power Sources 11:143–154

    Article  CAS  Google Scholar 

  6. Dustmann CH (2004) Advances in ZEBRA batteries. J Power Sources 127:85–92

    Article  CAS  Google Scholar 

  7. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  8. Li H, Bai Y, Wu F, Li Y, Wu C (2015) Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries. J Power Sources 273:784–792

    Article  CAS  Google Scholar 

  9. Lim SY, Kim H, Shakoor RA, Jung Y, Choi JW (2012) Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc 159:A1393–A1397

    Article  CAS  Google Scholar 

  10. Song W, Ji X, Pan C, Zhu Y, Chen Q, Banks CE (2013) A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys Chem Chem Phys 15:14357–14363

    Article  CAS  Google Scholar 

  11. Song W, Ji X, Yao Y, Zhu H, Chen Q, Sun Q, Banks CE (2014) A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. Phys Chem Chem Phys 16:3055–3061

    Article  CAS  Google Scholar 

  12. Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2 (PO4)3. J Mater Chem A 2:5358–5362

    Article  CAS  Google Scholar 

  13. Jung YH, Lim Ch H, Kim DK (2013) Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J Mater Chem A 1:11350–11354

    Article  CAS  Google Scholar 

  14. Goodenough JB, Hong HYP, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220

    Article  CAS  Google Scholar 

  15. Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2 (PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450

    Article  CAS  Google Scholar 

  16. Zhu X, Fang Y, Ai X, Yang H, Cao Y (2015) Na3V2 (PO4)3/C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries. J Alloys Compd 646:170–174

    Article  CAS  Google Scholar 

  17. Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S (2010) Yamaki JI. Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte J Electrochem Soc 157:A536–A543

    CAS  Google Scholar 

  18. Si L, Yuan Zh HL, Zhu Y, Qian Y (2014) Uniform and continuous carbon coated sodium vanadium phosphate cathode materials for sodium-ion battery. J Power Sources 272:880–885

    Article  CAS  Google Scholar 

  19. Zhu X, Fang Y, Ai X, Yang H, Cao Y (2015) Na3V2 (PO4)/C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries. J Alloys Compd 646:170–174

    Article  CAS  Google Scholar 

  20. Li S, Dong YF, Xu L, Xu X, He L, Mai LQ (2014) Batteries: effect of carbon matrix dimensions on the electrochemical properties of Na3V2 (PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv Mater 26:3545–3553

    Article  CAS  Google Scholar 

  21. Aragon MJ, Lavela P, Ortiz GF, Tirado JL (2015) Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J Electrochem Soc 162:A3077–A3083

    Article  CAS  Google Scholar 

  22. Liu J, Tang K, Song KP, Aken PAV, Yu Y, Maier J (2014) Electrospun Na3V2 (PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6:5081–5086

    Article  CAS  Google Scholar 

  23. Li GQ, Jiang DL, Wang H, Lan XZ, Zhong HH, Jiang Y (2014) Glucose-assisted synthesis of Na3V2 (PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265:325–334

    Article  CAS  Google Scholar 

  24. Shen W, Wang C, Liu HM, Yang WS (2013) Towards highly stable storage of sodium ions: a porous Na3V2(PO4)3/C cathode material for sodium-ion batteries. Chem Eur J 19:14712–14718

    Article  CAS  Google Scholar 

  25. Zhu CB, Song KP, Aken PAV, Yu Y, Maier J (2014) Carbon-coated Na3V2 (PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180

    Article  CAS  Google Scholar 

  26. Chen M, Kou K, Tu M, Hu J, Yang B. g (2015) Fabrication of multi-walled carbon nanotubes modified Na3V2 (PO4)3/C and its application to high-rate lithium-ion batteries cathode Solid State Ionics 274:24–28

  27. Chu Zh, Yue C (2016) Core–shell structured Na3V2 (PO4)3/C nanocrystals embedded in multi-walled carbon nanotubes: a high-performance cathode for sodium-ion batteries Solid State Ionics 287:36–41.

  28. Wang KX, Li XH, Chen JS (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527–545

    Article  CAS  Google Scholar 

  29. Gryzlov D, Novikova S, Kulova T, Skundin A, Yaroslavtsev A (2016) Behavior of LiFePO4/CPVDF/Ag-based cathode materials obtained using polyvinylidene fluoride as the carbon source. Mater Des 104:95–101

    Article  CAS  Google Scholar 

  30. Jian Z, Zhao L, Pan H, Hu YS, Li H, Chen W, Chen L (2012) Carbon coated Na3V2 (PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89

    Article  CAS  Google Scholar 

  31. Wang H, Jiang D, Zhang Y, Li G, Lan X, Zhong H, Zhang Z, Jiang Y (2015) Self-combustion synthesis of Na3V2 (PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries. Electrochim Acta 155:23–28

    Article  CAS  Google Scholar 

  32. Zhang Y, Zhao H, Du Y (2016) Symmetric full cell assembled by self-supporting Na3V2 (PO4)3 bipolar electrodes for superior sodium energy storage. J Mater Chem A 4:7155–7159

    Article  CAS  Google Scholar 

  33. Fang J, Wang S, Li Z, Chen H, Xia L, Ding L, Wang H (2016) Porous Na3V2 (PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries. J Mater Chem A 4:1180–1185

    Article  CAS  Google Scholar 

  34. Tao S, Cui P, Huang W, Yu Z, Wang X, Liu D, Song L, Chu W, Wei S (2016) Sol-gel design strategy for embedded Na3V2 (PO4)3 particles into carbon matrices for high-performance sodium-ion batteries. Carbon 96:1028–1033

    Article  CAS  Google Scholar 

  35. Wang D, Chen N, Li M, Wang C, Ehrenberg H, Bie X, Wei Y, Chen G, Du F (2015) Na3V2 (PO4)/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. J Mater Chem A 3:8636–8642

    Article  CAS  Google Scholar 

  36. Vidano RP, Fishbach DB (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Comm 39:341–344

    Article  CAS  Google Scholar 

  37. Xie W, Zhu X, Yi S, Kuang J, Cheng H, Tang W, Deng Y (2016) Electromagnetic absorption properties of natural microcrystalline graphite. Mater Des 90:38–46

    Article  CAS  Google Scholar 

  38. Wilcox JD, Doeff MM, Marcinek M, Kostecki R (2007) Factors influencing the quality of carbon coatings on LiFePO4. J Electrochem Soc 154:A389–A395

    Article  CAS  Google Scholar 

  39. Bhuvaneswari MS, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W (2008) Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries. J Power Sources 180:553–560

    Article  CAS  Google Scholar 

  40. Doeff MM, Hu Y, F. McLarnon, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid-State Lett 6:A207-A209

  41. Bonhomme F, Lassegues JC, Servant L (2001) Raman spectroelectrochemistry of a carbon supercapacitor. J Electrochem Soc 148:E450–E458

    Article  CAS  Google Scholar 

  42. Mariappan CR, Galven C, Crosnier-Lopez MP, Le Berre F, Bohnke O (2006) Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J Solid State Chem 179:450–456

    Article  CAS  Google Scholar 

  43. Ejehi F, Marashi SPH, Ghaani MR, Haghshenas DF (2012) The synthesis of NaSICON-type ZrNb (PO4)3 structure by the use of Pechini method. Ceram Int 38:6857–6863

    Article  CAS  Google Scholar 

  44. Il’in AB, Novikova SA, Sukhanov MV, Ermilova MM, Orekhova NV, Yaroslavtsev AB (2012) Catalytic activity of NASICON-type phosphates for ethanol dehydration and dehydrogenation. Inorg Mater 48:397–401

    Article  Google Scholar 

  45. Vujković M, Stojković I, Cvjetićanin N, Mentus S (2013) Gel-combustion synthesis of LiFePO4/C composite with improved capacity retention in aerated aqueous electrolyte solution. Electrochim Acta 92:248–256

    Article  Google Scholar 

  46. Li P, Shao L, Wang P, Zheng X, Yu H, Qian Sh, Shui M, Long N, Shu J (2015) Lithium sodium vanadium phosphate and its phase transition as cathode material for lithium ion batteries. Electrochim Acta 180:120–128

Download references

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research and Moscow Government (project no. 15-38-70042). In this work, we used the equipment of the Joint Research Center of IGIC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Novikova.

Electronic supplementary material

ESM 1

(DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekannikov, A., Kapaev, R., Novikova, S. et al. Na3V2(PO4)3/C/Ag nanocomposite materials for Na-ion batteries obtained by the modified Pechini method. J Solid State Electrochem 21, 1615–1624 (2017). https://doi.org/10.1007/s10008-017-3524-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3524-4

Keywords

Navigation