Skip to main content
Log in

Characterization of CuTe nanofilms grown by underpotential deposition based on an electrochemical codeposition technique

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This study reports the synthesis of semiconductor CuTe nanofilms using underpotential deposition (UPD) technique based on the simultaneous, constant-potential electrochemical codeposition of Cu and Te from solution containing Cu2+ and HTeO2 +. The electrochemical behaviors of copper, telluride, and Cu–Te system in the UPD and bulk regions were investigated. The synthesized CuTe nanofilms were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis) absorption spectroscopy, and Raman spectroscopy. SEM analysis revealed that the CuTe films exhibited a nanoscale and quite uniform structure. The stoichiometric ratio of the Cu and Te was determined to be 1:1 by XPS. XRD results showed that the CuTe films exhibit an orthorhombic structure, are polycrystalline. The band gaps of CuTe were observed to range from 2.68 to 3.70 eV depending on the deposition time and deposition potential. Bands were observed at 164, 231, and 264 cm−1 in the Raman spectra of the CuTe nanofilms.

ᅟ 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. He W, Zhang H, Zhang Y, Liu M, Zhang X, Yang F (2015) Electrodeposition and Characterization of CuTe and Cu2Te Thin Films. J Nanomater 2015:1–5

  2. Nawarange AV (2011) Optical emission spectroscopy during sputter deposition of CdTe solar cells and CuTe-based back contacts. PhD thesis, The University of Toledo, Ohio

  3. Šukytė J, Janickis V, Ivanauskas R, Žalenkienė S (2007) Formation and study of mixed copper sulfide-copper telluride layers on the surface of polyamide 6. Mater Sci 13:33–38

    Google Scholar 

  4. She G, Zhang X, Shi W, Cai Y, Wang N,Liu P, Chen D (2008) Template-free electrochemical synthesis of single-crystal CuTe nanoribbons. Cryst Growth Des 8:1789–1791.

    Article  CAS  Google Scholar 

  5. Ni Y, Zhang H, Xi J, Wang X, Zhang Y, Xiao Y, Mab X, Hong J (2014) Shape-controlled synthesis of copper telluride micro/nanostructures via a simple electrochemical deposition route. CrystEngComm 16:7869-7875

    Article  CAS  Google Scholar 

  6. Han C, Li Z, Li W, Choua S, Dou S (2014) Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. J Mater Chem A 2:11683-11690

    Article  CAS  Google Scholar 

  7. Wang Q, Chen G, Shi X, Jin R, Wang L, Chen D (2011) Controllable synthesis of Cu7Te4 nanoparticles and sheet-like particles through the delayed reaction and their thermal stability. Powder Technol 207:192–198

    Article  CAS  Google Scholar 

  8. Neyvasagam K, Ramakrishnan V, Sanjeevaraja C, Soundararajan N (2007) Raman studies on cupric telluride (CuTe) thin films. Optoelectron Adv Mater Commun 1:319–321

    CAS  Google Scholar 

  9. Neyvasagam K, Soundararajan N, Ajaysoni, Okram GS, Ganesan V (2008) Low-temperature electrical resistivity of cupric telluride (CuTe) thin films. Phys Status Solidi 245:77–81

  10. Rungtaweechai N, Tubtimtae A (2015) Cu2-x Te/MnTe co-sensitized near-infrared absorbing liquid-junction solar cells. Mater Lett 158:70–74

    Article  CAS  Google Scholar 

  11. Srathongluan P, Kuhamaneechot R, Sukthao P, Vailikhit V, Choopun S, Tubtimtae A (2015) Photovoltaic performances of Cu2-x Te sensitizer based on undoped and indium3+-doped TiO2 photoelectrodes and assembled counterelectrodes. J Colloid Interface Sci 463:222–228

    Article  Google Scholar 

  12. Pathan HM, Lokhande CD, Amalnerkar DP, Seth T (2003) Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method. Appl Surf Sci 218:290–296

    Article  CAS  Google Scholar 

  13. Rudnik E, Kozłowski J (2013) Electrochemical studies on the codeposition of copper and tellurium from acidic nitrate solution. Electrochim Acta 107:103–110

    Article  CAS  Google Scholar 

  14. Arya S, Khan S, Kumar S, Verma R, Lehana P (2013) Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor. 36:535–539

  15. Arya S, Khan S, Lehana P (2012) Synthesis of copper-telluride (CuTe) nanowires and its characterization using He-Ne laser. Int J Org Electron 1:7–14

    Article  Google Scholar 

  16. Fulari VJ, Malekar VP, Gangawane SA (2010) Measurement of properties of copper Tellüride thin films using holography. Prog Electromagn Res C 12:53–64

    Article  Google Scholar 

  17. Kumar S, Kundu V, Vohra A, Chakarvarti SK (2011) Synthesis and characterization of copper telluride nanowires via template-assisted dc electrodeposition route. J Mater Sci Mater Electron 22:995–999

    Article  CAS  Google Scholar 

  18. Kumar S, Singh V, Vohra A, Chakarvarti SK (2013) Morphology and optical properties of template synthesized copper-telluride nanowires. Am J Mater Sci Technol 1:74–85

    Google Scholar 

  19. Dhasade SS, Han SH, Fulari VJ (2012) A nanostructured copper telluride thin film grown at room temperature by an electrodeposition method. J Semicond 33:93002-1–6

    Article  Google Scholar 

  20. Kolb D (1978) Advances in electrochemistry and electrochemical engineering. John Wiley, New York

    Google Scholar 

  21. Erdoğan İY, Demir Ü (2009) Synthesis and characterization of Sb2Te3 nanofilms via electrochemical co-deposition method. J Electroanal Chem 633:253–258

    Article  Google Scholar 

  22. Zhu W, Yang J, Zhou D, Xiao C, Duan X (2008) Electrochemical atom-by-atom growth of highly uniform thin sheets of thermoelectric bismuth telluride via the route of ECALE. J Electroanal Chem 614:41–48

    Article  CAS  Google Scholar 

  23. Gregory BW, Stickney JL (1991) Electrochemical atomic layer epitaxy (ECALE). J Electroanal Chem 300:543–561

    Article  CAS  Google Scholar 

  24. Şişman İ, Demir Ü (2011) Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition. J Electroanal Chem 651:222–227

    Article  Google Scholar 

  25. Şişman İ, Biçer M (2011) Structural, morphological and optical properties of Bi2−x Sb x Se3 thin films grown by electrodeposition. J Alloys Compd 509:1538–1543

    Article  Google Scholar 

  26. Biçer M, Şişman İ (2011) Electrodeposition and growth mechanism of SnSe thin films. Appl Surf Sci 257:2944–2949

    Article  Google Scholar 

  27. Erdoğan İY, Demir Ü (2010) One-step electrochemical preparation of the ternary (BixSb1−x)2Te3 thin films on Au(111): composition-dependent growth and characterization studies. Electrochim Acta 55:6402–6407

    Article  Google Scholar 

  28. Köse H, Biçer M, Tütünoğlu Ç, Aydın AO, Şişman İ (2009) The underpotential deposition of Bi2Te3−y Se y thin films by an electrochemical co-deposition method. Electrochim Acta 54:1680–1686

    Article  Google Scholar 

  29. Cherevko S, Topalov AA, Zeradjanin AR, Katsounaros I, Mayrhofer KJJ (2013) Gold dissolution: towards understanding of noble metal corrosion. RSC Adv 3:16516–16527

    Article  CAS  Google Scholar 

  30. Kiani A, Fard EN (2009) Fabrication of palladium coated nanoporous gold film electrode via underpotential deposition and spontaneous metal replacement: a low palladium loading electrode with electrocatalytic activity. Electrochim Acta 54:7254–7259

    Article  CAS  Google Scholar 

  31. Misicak D, Ruthenburg TC, Fawcett WR (2010) Copper deposition and its replacement by platinum on a gold electrode. Electrochim Acta 55:7610–7614

    Article  CAS  Google Scholar 

  32. Zeng X, Bruckenstein S (1999) Polycrystalline gold electrode redox behavior in an ammoniacal electrolyte part I. A parallel RRDE, EQCM, XPS and TOF-SIMS study of supporting electrolyte phenomena 1. J Electroanal Chem 461:131–142

    Article  CAS  Google Scholar 

  33. Stickney JL (1999) Electrochemical atomic layer epitaxy. Electroanal Chem 21:75-209

    CAS  Google Scholar 

  34. Herzog G, Arrigan DWM (2005) Determination of trace metals by underpotential deposition–stripping voltammetry at solid electrodes. Trends Anal Chem 24:208–217

    Article  CAS  Google Scholar 

  35. Zhu W, Yang JY, Zhou DX, Baoa SQ, Fana XA, Duan XK (2007) Electrochemical characterization of the underpotential deposition of tellurium on Au electrode. Electrochim Acta 52:3660–3666

    Article  CAS  Google Scholar 

  36. Sorenson TA, Varazo K, Suggs DW, Stickney JL (2001) Formation of and phase transitions in electrodeposited tellurium atomic layers on Au(111). Surf Sci 470:197–214

    Article  CAS  Google Scholar 

  37. Xianhui G, Junyou Y, Wen Zhu, Jie H, Siqian B, Xi’an F, Xingkai D (2006) Deposition of antimony telluride thin film by ECALE. Sci China Ser Technol Sci 49:685–692

    Article  Google Scholar 

  38. Yagi I, Lantz JM, Nakabayashi S, Corn RM, Uosaki K (1996) In situ optical second harmonic generation studies of electrochemical deposition of tellurium on polycrystalline gold electrodes. J Electroanal Chem 401:95–101

    Article  Google Scholar 

  39. Biçer M, Aydın AO, Şişman İ (2010) Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates. Electrochim Acta 55:3749–3755

    Article  Google Scholar 

  40. Banga DO, Vaidyanathan R, Xuehai L, Stickney JL, Cox S, Happeck U (2008) Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD). Electrochim Acta 53:6988–6994

    Article  CAS  Google Scholar 

  41. Arellano-Tanori O, Acosta-Enriquez MC, Ochoa-Landin R, Iñiguez-Palomares R, Mendívil-Reynoso T, Flores-Acosta M, Castillo SJ (2014) Copper-Selenide and copper-telluride composites powders Sintetized by ionic exchange. Chalcogenide Lett 11:13–19

    CAS  Google Scholar 

  42. King MO, McLeod IM, Hesp D, Dhanak VR, Tadich A, Thomsen L, Cowie BCC, MacLaren DA, Kadodwala M (2014) The templated growth of a chiral transition metal chalcogenide. Surf Sci 629:94–101

    Article  CAS  Google Scholar 

  43. Baranova VR, Pinsker ZG (1964) Study of the copper-tellurium system in thin films. Sov Crystallogr 9:83–85

    Google Scholar 

  44. Neyvasagam K, Soundararajan N, Venkatraman V, Ganesan V (2007) Ellipsometric studies on cupric telluride thin films. Vacuum 82:72–77

    Article  CAS  Google Scholar 

  45. Andrikopoulos KS, Yannopoulos SN, Voyiatzis G, Kolobov AV, Ribes M, Tominaga J (2006) Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous-to-crystal transition. J Phys Condens Matter 18:965–979

    Article  CAS  Google Scholar 

  46. Němec P, Nazabal V, Moreac A, Gutwirth J, Beneš L, Frumar M (2012) Amorphous and crystallized Ge-Sb-Te thin films deposited by pulsed laser: local structure using Raman scattering spectroscopy. Mater Chem Phys 136:935–941

    Article  Google Scholar 

  47. Alanyalıoğlu M, Bayrakçeken F, Demir Ü (2009) Preparation of PbS thin films: a new electrochemical route for underpotential deposition. Electrochim Acta 54:6554–6559

    Article  Google Scholar 

  48. Irimpan L, Deepthy A, Krishnan B, Kukreja LM, Nampoori VPN, Radhakrishnan P (2008) Effect of self assembly on the nonlinear optical characteristics of ZnO thin films. Opt Commun 281:2938–2943

    Article  CAS  Google Scholar 

  49. Aleskerov FK, Kakhramanov KS, Kakhramanov SS (2012) Percolation effect in copper- and nickel-doped Bi2Te3 crystals. Inorg Mater 48:456–461

    Article  CAS  Google Scholar 

  50. Šukytė J, Ivanauskas R (2013) Formation and properties of copper chalcogenides thin films on polymers formed using sodium telluropentathionate. Cent Eur J Chem 11:1163–1171

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under project number 138366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Abacı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, Z.Y., Abacı, S. Characterization of CuTe nanofilms grown by underpotential deposition based on an electrochemical codeposition technique. J Solid State Electrochem 21, 1417–1430 (2017). https://doi.org/10.1007/s10008-016-3496-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3496-9

Keywords

Navigation