Skip to main content
Log in

An amperometric glucose oxidase biosensor based on liposome microreactor-chitosan nanocomposite-modified electrode for determination of trace mercury

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A biosensor for trace mercury ions based on glucose oxidase (GOD) immobilized on liposome microreactor and chitosan (CS) nanocomposite through layer-by-layer method is described herein. The GOD liposome microreactors (GLMs) were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and amperometric methods. The results indicated that GLMs were prepared by encapsulating the enzyme GOD in l-α-phosphatidylcholine liposome resulting in spherical bioreactor with a mean diameter of 5.83 ± 0.75 μm. The encapsulation efficiency and drug loading content of the GLMs were about 53.58 ± 0.91 and 41.15 ± 0.95%, respectively. Cyclic voltammogram (CV) was further utilized to explore relevant electrochemical activity on (CS/GLM)8 nanocomposite-modified glassy carbon electrode (GCE). The biosensor based on the (CS/GLM)8-GCE composite films was applied to detect Hg2+ with a broad linear range from 0.5 to 5.00 μmol/L, and the detection limit was brought down to 0.076 μmol/L. The apparent Michaelis-Menten constant, K m, for the enzymatic reaction was 0.37 mmol/L (S/N = 3). Furthermore, the biosensor showed good stability and reproducibility. Such new biosensor based on encapsulation of GOD within liposome microreactors shows great promise for rapid, simple, and cost-effective analysis of Hg2+ in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suchacz B, Wesolowski M (2012) The analysis of heavy metals content in herbal infusions. Cent Eur J Med 7:457–464

    CAS  Google Scholar 

  2. Bansal N, Vaughan J, Boullemant A, Leong T (2013) The determination of trace mercury in environmental samples: a review. Chemeca 41:771–776

    Google Scholar 

  3. Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53

    Article  CAS  Google Scholar 

  4. Guan HN, Liu XF, Wang W, Liang JZ (2014) Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles. Spectrochim. Acta Part A 121:527–532

    Article  CAS  Google Scholar 

  5. Wang L, Gao X, Jin L, Wu Q, Chen Z, Lin X (2013) Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sens Actuators B: Chem 176:9–14

    Article  CAS  Google Scholar 

  6. Guan HN, Zhang FL, Yu J, Chi DF (2012) The novel acetylcholinesterase biosensors based on liposome bioreactors-chitosan nanocomposite film for detection of organophosphates pesticides. Food Res Int 49:15–21

    Article  CAS  Google Scholar 

  7. Abu-Shawish HM, Saadeh SM, Hussien AR (2008) Enhanced sensitivity for Cu(II) by a salicylidine-functionalized polysiloxane carbon paste electrode. Talanta 76:941–948

    Article  CAS  Google Scholar 

  8. Do JS, Lin KH (2016) Kinetics of urease inhibition-based amperometric biosensors for mercury and lead ions detection. J Taiwan Inst Chem Eng 63:25–32

    Article  CAS  Google Scholar 

  9. Malitesta C, Guascito MR (2005) Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens. Bioelectron. 20:1643–1647

    Article  CAS  Google Scholar 

  10. Justino CIL, Rocha-Santos TA, Duarte AC (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal Chem 29:1172–1183

    Article  CAS  Google Scholar 

  11. Zhang Y, Zeng GM, Tang L, Chen J, Zhu Y, He XX, He Y (2015) Electrochemical sensor based on electrodeposited graphene-Au electrode and nano Au carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87:989–996

    Article  CAS  Google Scholar 

  12. Zhang Y, Zeng GM, Tang L, Li YP, Chen ZM, Huang GH (2014) Quantitative detection of trace mercury in environmental media using a three-dimensional electrochemical sensor with an anionic intercalator. RSC Adv 4:18485–18492

    Article  CAS  Google Scholar 

  13. Anik U, Cubukcu M, Yavuz Y (2013) Nanomaterial-based composite biosensor for glucose detection in alcoholic beverages. Artif Cells Nanomed Biotechnol 41:8–12

    Article  CAS  Google Scholar 

  14. Anusha JR, Justin Raj C, Cho BB, Fleming AT, Yu KH, Kim BC (2015) Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli. Sens. Actuators B Chem. 215:536–543

    Article  CAS  Google Scholar 

  15. Rodriguez BB, Bolbot JA, Tothill IE (2004) Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens. Bioelectron. 19:1157–1167

    Article  CAS  Google Scholar 

  16. Moyo M, Okonkwo JO, Agyei NM (2014) An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzym Microb Technol 56:28–34

    Article  CAS  Google Scholar 

  17. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63:276–286

    Article  CAS  Google Scholar 

  18. Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El’skaya AV (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochem 83:25–30

    Article  CAS  Google Scholar 

  19. Rodrigues CG, Wedd AG, Bond AM (1991) Electrochemistry of xanthine oxidase at glassy carbon and mercury electrodes. J Electroanal Chem Interfac 312:131–140

    Article  CAS  Google Scholar 

  20. Qiu ZL, Shu J, Jin GX, Wei QH, Chen GN, Tang DP (2016) Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine-Hg2+-thymine coordination chemistry. Biosens Bioelectron 77:681–686

    Article  CAS  Google Scholar 

  21. Liu JX, Xu XM, Tang L, Zeng GM (2009) Determination of trace mercury in compost extract by inhibition based glucose oxidase biosensor. Trans Nonferrous Met Soc China 19:235–240

    Article  Google Scholar 

  22. Ayenimo JG, Adeloju SB (2015) Inhibitive potentiometric detection of trace metals with ultrathin polypyrrole glucose oxidase biosensor. Talanta 137:62–70

    Article  CAS  Google Scholar 

  23. Ghica ME, Carvalho RC, Amine A, Brett CMA (2013) Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt or copper hexacyanoferrate. Sens. Actuators B Chem. 178:270–278

    Article  CAS  Google Scholar 

  24. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210-211:831–835

    Article  CAS  Google Scholar 

  25. Wang LE, Liu CG, Yang WS (2016) Non-enzymatic acetylcholine electrochemical biosensor based on flower-like NiAl layered double hydroxides decorated with carbon dots. Sens Actuators B Chem 233:199–205

    Article  CAS  Google Scholar 

  26. Chen Q, Han J, Shi H, Wu B, Xu XH, Osa T (2004) Use of chitosan for developing layer-by-layer multilayer thin films containing glucose oxidase for biosensor applications. Sensor Lett 1:102–105

    Article  Google Scholar 

  27. Nazemi Z, Shams E, Amini MK (2016) Construction of a biointerface for glucose oxidase through diazonium chemistry and electrostatic self-assembly technique. J Solid State Chem 20:429–438

    CAS  Google Scholar 

  28. Zhang Y, Zeng GM, Tang L, Li YP, Chen LJ, Pang Y, Li Z, Feng CL, Huang GH (2011) An electrochemical DNA sensor based on a layers-film construction modified electrode. Analyst 136:4204–4210

    Article  CAS  Google Scholar 

  29. Guo W, Johnson JL, Khan S, Ahmad A, Ahmad I (2005) Paclitaxel quantification in mouse plasma and tissues containing liposome-entrapped paclitaxel by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetics study. Anal Biochem 336:213–220

    Article  CAS  Google Scholar 

  30. Smith AM, Jaime-Fonseca MR, Grover LM, Bakalis S (2010) Alginate-loaded liposomes can protect encapsulated alkaline phosphatase functionality when exposed to gastric pH. J Agric Food Chem 58:4719–4724

    Article  CAS  Google Scholar 

  31. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853

    Article  CAS  Google Scholar 

  32. Danilich MJ, Gervasio D, Marchant RE (1993) Activity of free and immobilized glucose oxidase: an electrochemical study. Ann Biomed Eng 21:655–668

    Article  CAS  Google Scholar 

  33. Zhang Y, Zeng GM, Tang L, Niu CG, Pang Y, Chen LJ, Feng CL, Huang GH (2010) Highly sensitive fluorescence quantification of picloram using immunorecognition liposome. Talanta 83:210–215

    Article  CAS  Google Scholar 

  34. Stoytcheva M, Zlatev R, Velkova Z, Valdez B, Ovalle M, Petkov L (2009) Hybrid electrochemical biosensor for organophosphorus pesticides quantification. Electrochim Acta 54:1721–1727

    Article  CAS  Google Scholar 

  35. Liu T, Su HC, Qu XJ, Ju P, Cui L, Ai SY (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens. Actuators B Chem. 160:1255–1261

    Article  CAS  Google Scholar 

  36. Wu BY, Hou SH, Yu M, Qin X, Li S, Chen Q (2009) Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications. Mater Sci Eng C 29:346–349

    Article  Google Scholar 

  37. Tuoro DD, Portaccio M, Lepore M, Arduini F, Moscone D, Bencivenga U, Mita DG (2011) An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. New Biotech 29:132–138

    Article  Google Scholar 

  38. Scott DL, Bowden EF (1994) Enzyme-substrate kinetics of adsorbed cytochrome c peroxidase on pyrolytic graphite electrodes. Anal Chem 66:1217–1223

    Article  CAS  Google Scholar 

  39. Tang L, Zeng GM, Shen GL, Li YP, Zhang Y (2008) Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based sensor. Environ Sci Technol 42:1207–1212

    Article  CAS  Google Scholar 

  40. Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El’skaya AV, Dzyadevych SV, Soldatkin AP (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bio Elec Chem 83:25–30

    CAS  Google Scholar 

  41. Guascito MR, Malitesta C, Mazzotta E, Turco A (2008) Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor study of the effect of hydrogen peroxide decomposition. Sens. Actuators B Chem. 131:394–402

    Article  CAS  Google Scholar 

  42. Ho JA, Hsu HW, Huang MR (2004) Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Anal Biochem 330:342–349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31370649 and 31201376), the Planning Subject of “The Twelfth Five-Year-Plan” in the National Science and Technology for the Rural Development in China (2012BAD19B0704), the China Postdoctoral Science Foundation (2014T70304, 2013M531009), University Nursing Program for Young Scholars with Ceative Talents in Heilongjiang Province (2016060) and the Heilongjiang Postdoctoral Fund (LBH-Z13002). The authors gratefully acknowledge the financial support by Material Science and Engineering College of Northeast Forestry University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defu Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Guan, H. & Chi, D. An amperometric glucose oxidase biosensor based on liposome microreactor-chitosan nanocomposite-modified electrode for determination of trace mercury. J Solid State Electrochem 21, 1175–1183 (2017). https://doi.org/10.1007/s10008-016-3468-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3468-0

Keywords

Navigation