Skip to main content
Log in

Atmospheric corrosion of copper and silver influenced by particulate matter

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The atmospheric corrosion of copper and silver influenced by graphite and alumina as particulate matter (PM) in an environment containing 200 μg m−3 SO2 + 150 μg m−3 NO2 at 85% RH and 25 °C was analyzed. Different proportions of PM mixture conditions were used, and the corrosion rate was followed using gravimetric analysis. Results of linear sweep voltammetry (LSV) and coulometric reduction (CR) indicated that larger corrosion rates were obtained in the presence of deposited PM. Under present exposure conditions, copper corrosion rate was larger than silver corrosion rate. X-ray diffraction (XRD) shows the presence of cuprite (Cu2O) and brochantite (Cu4SO4(OH)6) in the case of copper and achantite (Ag2S) in the case of silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Askey A, Lyon SB, Thompson GE, Johnson JB, Wood GC, Sage PW, Cooke MJ (1993) The effect of fly-ash particulates on the atmospheric corrosion of zinc and mild steel. Corros Sci 34:1055–1081

    Article  CAS  Google Scholar 

  2. Sinclair JD, Psota-Kelty LA, Weschler CJ, Shields HC (1990) Deposition of airborne sulfate, nitrate, and chloride salts as it relates to corrosion of electronics. J Electrochem Soc 137:1200–1206

    Article  CAS  Google Scholar 

  3. Sinclair JD, Psota-Kelty LA, Weschler CJ, Shields HC (1990) Measurement and modeling of airbone concentrations and indoor surface accumulation rates of ionic substances at Neenah, Wisconsin. Atmos Environ Part A 24:627–638

    Article  Google Scholar 

  4. Takano E, Mano K (1968) The failure mode and lifetime of static contacts. IEEE Trans Parts Mater Packag 4:51–55

    Article  Google Scholar 

  5. Abbott WH (1974) Effects of industrial air pollutants on electrical contact materials. IEEE Trans Parts Hybrids Packag 10:24–27

    Article  CAS  Google Scholar 

  6. Frankenthal RP (1990) Passivity and corrosion of electronic materials and devices. Corros Sci 31:59–68

    Article  CAS  Google Scholar 

  7. National Ambient Air Quality Objectives for Particulate Matter (1998) CEPA/FPAC Working Group on Air Objectives and Guidelines, Ottawa. http://publications.gc.ca/collections/Collection/H46-2-98-220E.pdf. Accessed 27 September 2016

  8. Vernon WHJ (1931) A laboratory study of the atmospheric corrosion of metals. Part I.—the corrosion of copper in certain synthetic atmospheres, with particular reference to the influence of sulphur dioxide in air of various relative humidities. Trans Faraday Soc 27:255–277

    Article  Google Scholar 

  9. Novakov T, Chang SG, Harker AB (1974) Sulfates as pollution particulates: catalytic formation on carbon (soot) particles. Science 186:259–261

    Article  CAS  Google Scholar 

  10. Walton JR, Johnson JB, Wood GC (1982) Atmospheric corrosion initiation by sulphur dioxide and particulate matter: II. Characterisation and corrosivity of individual particulate atmospheric pollutants. Br Corros J 17:65–70

    Article  CAS  Google Scholar 

  11. Nowak M, Najder A, Opyrchał M, Boczkal S, Żelechowski J, Bigaj M, Gawlik M (2016) Effect of Al2O3 ceramic particles on corrosion behaviour and tribological properties of nickel composite coatings. Arch Metall Mater 61:195–198

    CAS  Google Scholar 

  12. Kucera V (2005) Model for multipollutant impact and assessment of threshold levels for cultural heritage. Swedish Corrosion Institute, Stockholm. http://www.corr-institute.se/multi-assess/web/page.aspx

  13. Saha D, Pandya A, Singh JK, Paswan S, Singh DDD (2016) Role of environmental particulate matters on corrosion of copper. Atmos Pollut Res. doi:10.1016/j.apr.2016.06.007

    Google Scholar 

  14. Jonsson L, Karlsson E, Jönsson P (2008) Aspects of particulate dry deposition in the urban environment. J Hazard Mater 153:229–243

    Article  CAS  Google Scholar 

  15. Gil H, Calderón JA, Buitrago CP, Echavarria A (2010) Indoor atmospheric corrosion of electronic materials in tropical-mountain environments. Corros Sci 52:327–337

    Article  CAS  Google Scholar 

  16. ISO TC 156/WG4–N358 (2003) Classification of corrosivity of indoor atmospheres—determination of corrosion attack in indoor atmospheres (revision of N 352), ISO Draft

  17. Gil H, Buitrago CP, Echavarría A (2015) Characterization of atmospheric corrosion products formed on silver in tropical-mountain environments. J Solid State Electrochem 19:1817–1825

    Article  CAS  Google Scholar 

  18. ASTM B825-13 (2013) Standard test method for coulometric reduction of surface films on metallic test samples (West Conshohocken, PA). ASTM International

  19. Han Y-S, Lee J-Y (2003) Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition. Electrochim Acta 48:1073–1079

    Article  CAS  Google Scholar 

  20. Corvo F, Torrens AD, Betancourt N, Perez J, Gonzalez E (2007) Indoor atmospheric corrosion in Cuba. A report about indoor localized corrosion. Corros Sci 49:418–435

    Article  CAS  Google Scholar 

  21. Fonseca ITE, Picciochi R, Mendonça MH, Ramos AC (2004) The atmospheric corrosion of copper at two sites in Portugal: a comparative study. Corros Sci 46:547–561

    Article  CAS  Google Scholar 

  22. Laurie AB, Norton ML (1989) Preparation and characterization of thin films of copper(II) oxide by low temperature normal pressure metalorganic chemical vapor deposition. Mater Res Bull 24:213–219

    Article  CAS  Google Scholar 

  23. Watanabe M, Higashi Y, Tanaka T (2003) Differences between corrosion products formed on copper exposed in Tokyo in summer and winter. Corros Sci 45:1439–1453

    Article  CAS  Google Scholar 

  24. Márquez A, Blanco G, Fernandez de Rapp ME, Lamas DG, Tarulla R (2004) Properties of cupric oxide coatings prepared by cathodic arc deposition. Surf Coat Technol 187:154–160

    Article  Google Scholar 

  25. Veleva L, Valdez B, Lopez G, Vargas L, Flores J (2008) Atmospheric corrosion of electro-electronics metals in urban desert simulated indoor environment. Corros Eng Sci Technol 43:149–155

    Article  CAS  Google Scholar 

  26. Polikreti K, Argyropoulos V, Charalambous D, Vossou A, Perdikatsis V, Apostolaki C (2009) Tracing correlations of corrosion products and microclimate data on outdoor bronze monuments by principal component analysis. Corros Sci 51:2416–24229

    Article  CAS  Google Scholar 

  27. Watanabe M, Hokazono A, Handa T, Ichino T, Kuwaki W (2006) Corrosion of copper and silver plates by volcanic gases. Corros Sci 48:3759–3766

    Article  CAS  Google Scholar 

  28. Mahalingam T, Chitra JSP, Rajendran S, Jayachandran M, Chokalingam MJ (2000) Galvanostatic deposition and characterization of cuprous oxide thin films. J Cryst Growth 216:304–310

    Article  CAS  Google Scholar 

  29. Waterhouse GIN, Bowmaker GA, Metson JB (2001) The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and Raman spectroscopic study. Phys Chem Chem Phys 3:3838–3845

    Article  CAS  Google Scholar 

  30. Al-Kuhaili MF (2007) Characterization of thin films produced by the thermal evaporation of silver oxide. J Phys D Appl Phys 40:2847–2853

    Article  CAS  Google Scholar 

  31. Raju NRC, Kumar KJ, Subrahmanyam A (2009) Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth. J Phys D Appl Phys 42:135411

    Article  Google Scholar 

  32. Wiesinger R, Martina I, Kleber C, Schreiner M (2013) Influence of relative humidity and ozone on atmospheric silver corrosion. Corros Sci 77:69–76

    Article  CAS  Google Scholar 

  33. Tran TTM, Fiaud C, Sutter EMM, Villanova A (2003) The atmospheric corrosion of copper by hydrogen sulphide in underground conditions. Corros Sci 45:2787–2802

    Article  CAS  Google Scholar 

  34. Gil H, Echavarría A, Echeverría F (2009) Electrochemical reduction modeling of copper oxides obtained during in situ and ex situ conditions in the presence of acetic acid. Electrochim Acta 54:4676–4681

    Article  CAS  Google Scholar 

  35. Mendoza AR, Corvo F, Gómez A, Gómez J (2004) Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate. Corros Sci 46:1189–1200

    Article  CAS  Google Scholar 

  36. Campbell WE, Thomas UB (1939) Tarnish studies the electrolytic reduction method for the analysis of films on metal surfaces. Trans Electrochem Soc 76:303–328

    Article  Google Scholar 

  37. Krumbein SJ, Newell B, Pascucci V (1989) Monitoring environmental tests by coulometric reduction of metallic control samples. J Test Eval 17:357–367

    Article  CAS  Google Scholar 

  38. Capelo S, Homem PM, Cavalheiro J, Fonseca ITE (2012) Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents. J Solid State Electrochem 17:223–234

    Article  Google Scholar 

  39. Persson D, Leygraf C (1993) In situ infrared reflection absorption spectroscopy for studies of atmospheric corrosion. J Electrochem Soc 140:1256–1260

    Article  CAS  Google Scholar 

  40. Gil H, Leygraf C (2007) Quantitative in situ analysis of initial atmospheric corrosion of copper induced by acetic acid. J Electrochem Soc 154:C272–C278

    Article  CAS  Google Scholar 

  41. Gil H, Leygraf C (2007) Initial atmospheric corrosion of copper induced by carboxylic acids a comparative in situ study. J Electrochem Soc 154:C611–C617

    Article  CAS  Google Scholar 

  42. Shams ElDin AM, Abd ElKader JM, Abd ElWahab FM, Saber TMH, ElAzhari AA (1985) An electrochemical and ESCA study on the tarnishing of silver in solutions of different pS and pH values. Electrochim Acta 30:461–468

    Article  Google Scholar 

  43. Johansson E, Leygraf C (1999) Corrosion measurements of silver and copper in indoor atmospheres using different evaluation techniques. Br Corros J 34:27–33

    Article  CAS  Google Scholar 

  44. Fukuda Y, Fukushima T, Sulaiman A, Musalam I, Yap LC, Chotimongkol L, Judabong S, Potjanart A, Keowkangwal O, Yoshihara K, Tosa M (1991) Indoor corrosion of copper and silver exposed in Japan and ASEAN1 countries. J Electrochem Soc 138:1238–1243

    Article  CAS  Google Scholar 

  45. Liang D, Allen HC, Frankel GS, Chen ZY, Kelly RG, Wu Y, Wyslouzil BE (2010) Effects of sodium chloride particles, ozone, UV, and relative humidity on atmospheric corrosion of silver. J Electrochem Soc 157:C146–C156

    Article  CAS  Google Scholar 

  46. Watanabe M, Handa T, Ichino T, Kuwaki W, Sakai J (2009) Characterization of patinas that formed on copper exposed in different environments for one month. Zairyo to Kankyo 58:143–157

    Article  CAS  Google Scholar 

  47. Rice DW, Peterson P, Rigby EB, Phipps PBP, Cappell RJ, Tremoureux R (1981) Atmospheric corrosion of copper and silver. J Electrochem Soc 128:275–284

    Article  CAS  Google Scholar 

  48. Scully J, Graedel TE (1987) Copper patina formation copper patinas formed in the atmosphere—III. A semi-quantitative assessment of rates and constraints in the greater New York metropolitan area. Corros Sci 27:741–769

    Article  Google Scholar 

  49. Kucera V, Fitz S (1995) Direct and indirect air pollution effects on materials including cultural monuments. Water Air Soil Pollut 85:153–165

    Article  CAS  Google Scholar 

  50. Mariaca L, de la Fuente D, Feliu JS, Simancas J, Gonzalez JA, Morcillo M (2008) Interaction of copper and NO2: effect of joint presence of SO2, relative humidity and temperature. J Phys Chem Solids 69:895–904

    Article  CAS  Google Scholar 

  51. Graedel TE (1992) Corrosion mechanisms for silver exposed to the atmosphere. J Electrochem Soc 139:1963–1970

    Article  CAS  Google Scholar 

  52. Kleber C, Wiesinger R, Schnöller J, Hilfrich U, Hutter H, Schreiner M (2008) Initial oxidation of silver surfaces by S2−and S4+ species. Corros Sci 50:1112–1121

    Article  CAS  Google Scholar 

  53. Volpe L, Peterson PJ (1989) The atmospheric sulfidation of silver in a tubular corrosion reactor. Corros Sci 29:1179–1196

    Article  CAS  Google Scholar 

  54. Rickett BI, Payer JH (1995) Composition of copper tarnish products formed in moist air with trace levels of pollutant gas: sulfur dioxide and sulfur dioxide/nitrogen dioxide. J Electrochem Soc 142:3713–3722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to TROPICORR project and Universidad de Antioquia for financial assistance (Estrategia de Sostenibilidad 2015-2016 de la Universidad de Antioquia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, H., Buitrago, C.P. & Calderón, J.A. Atmospheric corrosion of copper and silver influenced by particulate matter. J Solid State Electrochem 21, 1111–1119 (2017). https://doi.org/10.1007/s10008-016-3467-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3467-1

Keywords

Navigation