Skip to main content
Log in

Characterization of atmospheric corrosion products formed on silver in tropical-mountain environments

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical characterization of the atmospheric corrosion products formed on silver exposed to Colombian tropical-mountain sites is reported. Rural and urban environments were selected for exposures up to 6 months. Corrosion products were characterized by X-ray diffraction (XRD), linear sweep voltammetry (LSV), and coulometric reduction (CR). XRD patterns shows that achantite (Ag2S) and silver (I) oxide (Ag2O) were the main corrosion products. Electrochemical results show a relationship between the reduction charge obtained by LSV and the sulfide thickness estimated by CR. To perform a correct assignments of all reduction peaks, cyclic voltammetry (CV) and subsequent anodic polarizations at specific potentials of pure silver surface were made in different solutions, such as 0.1 M NaOH, 0.01 M Na2S, and 0.1 M Na2SO4. This procedure was reliable in terms of the electrochemical formation of Ag2S, Ag2O, and Ag2SO4, respectively. Electrochemical techniques were highly reproducible and sensible to detect and measure silver corrosion rates in this type of environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mendoza AR, Corvo F, Gómez A, Gómez J (2004) Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate. Corros Sci 46:1189–1200

    Article  CAS  Google Scholar 

  2. Graedel TE (1992) Corrosion mechanisms for silver exposed to the atmosphere. J Electrochem Soc 139:1963–1970

    Article  CAS  Google Scholar 

  3. Abbott WH (1974) Effects of industrial air pollutants on electrical contact materials. IEEE Trans Parts Hybrids Packag 10:24–27

    Article  CAS  Google Scholar 

  4. Franey JP, Kammlott GW, Graedel TE (1985) The corrosion of silver by atmospheric sulfurous gases. Corros Sci 25:133–143

    Article  CAS  Google Scholar 

  5. Volpe L, Peterson PJ (1989) The atmospheric sulfidation of silver in a tubular corrosion reactor. Corros Sci 29:1179–1196

    Article  CAS  Google Scholar 

  6. Kleber C, Wiesinger R, Schnöller J, Hilfrich U, Hutter H, Schreiner M (2008) Initial oxidation of silver surfaces by S2− and S4+ species. Corros Sci 50:1112–1121

    Article  CAS  Google Scholar 

  7. Wiesinger R, Martina I, Kleber C, Schreiner M (2013) Influence of relative humidity and ozone on atmospheric silver corrosion. Corros Sci 77:69–76

    Article  CAS  Google Scholar 

  8. Rice DW, Peterson P, Rigby EB, Phipps PBP, Cappell RJ, Tremoureux R (1981) Atmospheric corrosion of copper and silver. J Electrochem Soc 128:275–284

    Article  CAS  Google Scholar 

  9. Graedel TE, Franey JP, Gualtieri GJ, Kammlott GW, Malm DL (1985) On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS. Corros Sci 25:1163–1180

    Article  CAS  Google Scholar 

  10. Arroyave C, Morcillo M (1995) The effect of nitrogen oxides in atmospheric corrosion of metals. Corros Sci 37:293–305

    Article  CAS  Google Scholar 

  11. Leygraf C, Graedel T (2000) Atmospheric corrosion. Wiley-Interscience, New York

    Google Scholar 

  12. de Mele MFL, Duffó G (2002) Tarnishing and corrosion of silver-based casting alloys in synthetic salivas of different compositions. J Appl Electrochem 32:157–164

    Article  Google Scholar 

  13. Homem P, Fonseca I, Cavalheiro J (2008) The tarnishing of the silver altar of porto’s cathedral: an atmospheric corrosion case. Corros Prot Mater 27:82–86

    CAS  Google Scholar 

  14. Ha H, Payer J (2011) The effect of silver chloride formation on the kinetics of silver dissolution in chloride solution. Electrochim Acta 56:2781–2791

    Article  CAS  Google Scholar 

  15. Capelo S, Homem PM, Cavalheiro J, Fonseca ITE (2013) Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents. J Solid State Electrochem 17:223–234

    Article  CAS  Google Scholar 

  16. Allen JA (1952) Oxide films on electrolytically polished copper surfaces. Trans Faraday Soc 48:273–279

    Article  CAS  Google Scholar 

  17. Krumbein S, Newell B, Pascucci V (1989) Monitoring environmental tests by coulometric reduction of metallic control samples. J Test Eval 17:357–367

    Article  CAS  Google Scholar 

  18. Gil H, Leygraf C (2007) Initial atmospheric corrosion of copper induced by carboxylic acids A comparative in situ study. J Electrochem Soc 154:C611–C617

    Article  CAS  Google Scholar 

  19. Echavarría A, Echeverría F, Gil H, Arroyave C (2009) Influence of environmental factors in the atmospheric corrosion of copper in the presence of propionic acid. J Chil Chem Soc 54:212–217

    Article  Google Scholar 

  20. Campbell WE, Thomas UB (1939) Tarnish studies the electrolytic reduction method for the analysis of films on metal surfaces. Trans Electrochem Soc 76:303–328

    Article  Google Scholar 

  21. Bernard MC, Dauvergne E, Evesque M, Keddam M, Takenouti H (2005) Reduction of silver tarnishing and protection against subsequent corrosion. Corros Sci 47:663–679

    Article  CAS  Google Scholar 

  22. Silva M, Dick LFP (2000) Development of a coulometric method for the determination of gaseous sulfur compounds in urban atmospheres. J Braz Chem Soc 11:159–163

    CAS  Google Scholar 

  23. Costa V, Leyssens K, Adriaens A, Richard N, Scholz F (2010) Electrochemistry reveals archaeological materials. J Solid State Electrochem 14:449–451

    Article  CAS  Google Scholar 

  24. Amor YB, Sutter E, Takenouti H, Tribollet B, Boinet M, Faure R, Balencie J, Durieu G (2014) Electrochemical study of the tarnish layer of silver deposited on glass. Electrochim Acta 131:89–95

    Article  CAS  Google Scholar 

  25. Gil H, Calderón JA, Buitrago CP, Echavarría A, Echeverría F (2010) Indoor atmospheric corrosion of electronic materials in tropical-mountain environments. Corros Sci 52:327–337

    Article  CAS  Google Scholar 

  26. Morcillo M, Almeida E, Marrocos M, Rosales B (2001) Atmospheric corrosion of copper in Ibero-America. Corrosion 57:967–980

    Article  CAS  Google Scholar 

  27. ETS 300 019-1-0 (1994) Equipment Engineering (EE), environmental conditions and environmental tests for telecommunications equipment Part 1–0: classification of environmental conditions

  28. ISO TC 156/WG 4 — N382 (2000) Measurement of environmental parameters affecting indoor corrosivity ISO/CD 15965 (Draft ISO 11844–3, 5th Revised Version of 2000-25-10)

  29. ISO 9225:1992 corrosion of metals and alloys, corrosivity of atmospheres, measurement of pollution

  30. ASTM B825-13 (2013) Test method for coulometric reduction of surface films on metallic test samples. ASTM International

  31. Shams ElDin AM, Abd ElKader JM, Abd ElWahab FM, Saber TMH, ElAzhari AA, ElWaraky AA (1985) An electrochemical and ESCA study on the tarnishing of silver in solutions of different pS and pH values. Electrochim Acta 30:461–468

    Article  Google Scholar 

  32. Johansson E, Leygraf C (1999) Corrosion measurements of silver and copper in indoor atmospheres using different evaluation techniques. Br Corros J 34:27–33

    Article  CAS  Google Scholar 

  33. Fukuda Y, Fukushima T, Sulaiman A, Musalam I, Yap LC, Chotimongkol L, Judabong S, Potjanart A, Keowkangwal O, Yoshihara K, Tosa M (1991) Indoor corrosion of copper and silver exposed in Japan and ASEAN1 countries. J Electrochem Soc 138:1238–1243

    Article  CAS  Google Scholar 

  34. Liang D, Allen HC, Frankel GS, Chen ZY, Kelly RG, Wu Y, Wyslouzil BE (2010) Effects of sodium chloride particles, ozone, UV, and relative humidity on atmospheric corrosion of silver. J Electrochem Soc 157:C146–C156

    Article  CAS  Google Scholar 

  35. Ramamurthy AC, Rangarajan SK (1981) A gaussian quadrature analysis of linear sweep voltammetry. Electrochim Acta 26:11–115

    Google Scholar 

  36. Waterhouse GIN, Bowmaker GA, Metson JB (2001) The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and raman spectroscopic study. Phys Chem Chem Phys 3:3838–3845

    Article  CAS  Google Scholar 

  37. Al-Kuhaili MF (2007) Characterization of thin films produced by the thermal evaporation of silver oxide. J Phys Appl Phys 40:2847

    Article  CAS  Google Scholar 

  38. Ramesh MNV, Sundarayya Y, Sunandana CS (2007) Reactively radio frequency sputtered silver oxide thin films: phase evolution and phase stability. Mod Phys Lett B 21:1933–1944

    Article  CAS  Google Scholar 

  39. Raju NRC, Kumar KJ, Subrahmanyam A (2009) Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth. J Phys Appl Phys 42:135411

    Article  Google Scholar 

  40. Djurle S, Sørensen P, Stenhagen E, Hartiala K, Veige S, Diczfalusy E (1958) An X-ray study on the system Ag-Cu-S. Acta Chem Scand 12:1427–1436

    Article  CAS  Google Scholar 

  41. Lu X, Li L, Zhang W, Wang C (2005) Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology 16:2233

    Article  CAS  Google Scholar 

  42. Suzuki RO, Ogawa T, Ono K (1999) Use of ozone to prepare silver oxides. J Am Ceram Soc 82:2033–2038

    Article  CAS  Google Scholar 

  43. Kim H (2003) Corrosion process of silver in environments containing 0.1 ppm H2S and 1.2 ppm NO2. Mater Corros 54:243–250

    Article  CAS  Google Scholar 

  44. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. NACE International

  45. Jovic BM, Jovic VD, Stafford GR (1999) Cyclic voltammetry on Ag(111) and Ag(100) faces in sodium hydroxide solutions. Electrochem Commun 1:247–251

    Article  CAS  Google Scholar 

  46. Jović BM, Jović VD, Stafford GR (2000) Electrochemical formation and characterization of silver (I) oxide. Mater Sci Forum 352:57–64

    Article  Google Scholar 

  47. Takehara Z, Namba Y, Yoshizawa S (1968) Anodic oxidation of silver in alkaline solution. Electrochim Acta 13:1395–1403

    Article  CAS  Google Scholar 

  48. Assaf FH, Zaky AM, Abd El-Rehim SS (2002) Cyclic voltammetric studies of the electrochemical behaviour of copper–silver alloys in NaOH solution. Appl Surf Sci 187:18–27

    Article  CAS  Google Scholar 

  49. Jovic B, Jovic V (2004) Electrochemical formation and characterization of Ag2O. J Serb Chem Soc 69:153–166

    Article  CAS  Google Scholar 

  50. Sato N, Shimizu Y (1973) Anodic oxide on silver in alkaline solution. Electrochim Acta 18:567–570

    Article  CAS  Google Scholar 

  51. Ambrose J, Barradas RG (1974) The electrochemical formation of Ag2O in KOH electrolyte. Electrochim Acta 19:781–786

    Article  CAS  Google Scholar 

  52. Arul Raj I, Vasu KI (1993) Electrochemical and oxygen reduction behaviour of solid silver-bismuth/antimony electrodes in KOH solutions. J Appl Electrochem 23:728–734

    Google Scholar 

  53. Droog JMM, Alderliesten PT, Bootsma GA (1979) Initial stages of anodic oxidation of silver in sodium hydroxide solution studied by potential sweep voltammetry and ellipsometry. J Electroanal Chem Interfacial Electrochem 99:173–186

    Article  CAS  Google Scholar 

  54. Teijelo ML, Vilche JR, Arvía AJ (1984) The electroformation and electroreduction of anodic films formed on silver in 0.1 M sodium hydroxide in the potential range of the Ag/Ag2O couple. J Electroanal Chem Interfacial Electrochem 162:207–224

    Article  Google Scholar 

  55. Gomez Becerra J, Salvarezza RC, Arvia AJ (1988) The role of a slow phase formation process in the growth of anodic silver oxide layers in alkaline solutions—I. Electroformation of Ag(I) oxide layer. Electrochim Acta 33:1431–1437

    Article  CAS  Google Scholar 

  56. Price DW, Warren GW, Drouven B (1986) The electrochemical behaviour of silver sulphide in sulphuric acid solutions. J Appl Electrochem 16:719–731

    Article  CAS  Google Scholar 

  57. Schweizer M, Kolb DM (2003) First observation of an ordered sulfate adlayer on Ag single crystal electrodes. Surf Sci 544:93–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to TROPICORR project and Universidad de Antioquia for financial assistance (Estrategia de Sostenibilidad 2013–2014 de la Universidad de Antioquia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gil.

Additional information

H. Gil holds a PhD, Politécnico Colombiano Jaime Isaza Cadavid PCJIC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, H., Buitrago, C.P. & Echavarría, A. Characterization of atmospheric corrosion products formed on silver in tropical-mountain environments. J Solid State Electrochem 19, 1817–1825 (2015). https://doi.org/10.1007/s10008-015-2821-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2821-z

Keywords

Navigation