Skip to main content
Log in

Size-dependent photocurrent switching in chemical bath deposited CdSe quantum dot films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Size-dependent photocurrent switching has been investigated in chemical bath deposited CdSe quantum dot (QD) films with band gaps 2.26, 2.09, and 1.81 eV (corresponds to nanoparticles’ average diameter of 4, 5, and 10 nm). CdSe films generate only anodic photocurrent (exhibit n-type semiconductor behavior) in the solution which contains only acceptor of photoholes (SO3 2− anions), whereas cathodic photocurrent (corresponding to p-type behavior) arises after immersion of the films in polyselenide electrolyte (containing Sen 2−/Se2− redox system). Appearance of the cathodic photocurrent is related to chemisorptions of Se2− and Sen 2− anions, as revealed by the cadmium underpotential deposition (UPD). Photocurrent switching from anodic to cathodic becomes more pronounced with decreasing of CdSe nanoparticle size because small quantum dots with their broadened band gaps have more favorable conduction band energy for electron injection to polyselenide anions. On the contrary, particle size does not play a significant role for the injection of photoholes into the electrolyte because the position of the valence band is weakly size-dependent, and anodic photocurrent is determined primarily by the real surface area of the electrode, which was found to be greater than the geometrical one by 1–2 orders of magnitude from cadmium UPD. Effective charge separation at the highly developed CdSe-electrolyte interface contributes to high incident photon-to-current conversion efficiency of photocurrent (IPCE ~40 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamat P (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  CAS  Google Scholar 

  2. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  3. Nozik AJ (2002) Quantum dot solar cells. Phys E 14:115–120

    Article  CAS  Google Scholar 

  4. Rühle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. ChemPhysChem 11:2290–2304

    Article  Google Scholar 

  5. Hetsch F, Xu X, Wang H, Kershaw SV, Rogach AL (2011) Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device topologies. J Phys Chem Lett 2:1879–1887

    Article  CAS  Google Scholar 

  6. Kryukov AI, Stroyuk OL, Kuchmiy SY, Pohodenko VD (2013) Nanophotocatalysis. Akademperiodika, Kiev

    Google Scholar 

  7. Bard AJ (1979) Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10:59–75

    Article  CAS  Google Scholar 

  8. Kamat PV (2012) Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J Phys Chem Lett 3:663–672

    Article  CAS  Google Scholar 

  9. Vaneski A, Schneider J, Susha AS, Rogach AL (2014) Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation. APL Mater 2:012104

    Article  Google Scholar 

  10. Gaponenko SV (2010) Introduction to nanophotonics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  CAS  Google Scholar 

  12. Bang JH, Kamat PV (2009) Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3:1467–1476

    Article  CAS  Google Scholar 

  13. Hodes G (2007) Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys Chem Chem Phys 9:2181–2196

    Article  CAS  Google Scholar 

  14. Hodes G, Albu-Yaron A, Decker F, Motisuke P (1987) Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Phys Rev B 36:4215–4221

    Article  CAS  Google Scholar 

  15. Hodes G, Howell ID, Peter LM (1992) Nanocrystalline photoelectrochemical cells. A new concept in photovoltaic cells. J Electrochem Soc 139:3136–3140

    Article  CAS  Google Scholar 

  16. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  17. Kronik L, Ashkenasy N, Leibovitch M, Fefer E, Shapira Y, Gorer S, Hodes G (1998) Surface states and photovoltaic effects in CdSe quantum dot films. J Electrochem Soc 145:1748–1755

    Article  CAS  Google Scholar 

  18. Madelung O (2004) Semiconductors: data handbook. Springer-Verlag, Berlin – Heidelberg

    Book  Google Scholar 

  19. Malashchonak MV, Mazanik AV, Korolik OV, Streltsov EA, Kulak AI (2015) Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method. Beilstein J Nanotechnol 6:2252–2262

    Article  CAS  Google Scholar 

  20. Kozitskiy AV, Stroyuk OL, Kuchmiy SY, Mazanik AV, Poznyak SK, Streltsov ЕA, Kulak AI, Korolik OV, Dzhagan VM (2014) Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method. Thin Solid Films 562:56–62

    Article  Google Scholar 

  21. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055

    Article  CAS  Google Scholar 

  22. Efros AL, Efros AL (1982) Interband light absorption in semiconductor sphere. Soviet Physics Semiconductors 16:772–775

    Google Scholar 

  23. Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137

    Article  CAS  Google Scholar 

  24. Beranek R (2011) (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Advances in Physical Chemistry 2011:786759

    Article  Google Scholar 

  25. Norris DJ, Bawendi MG (1996) Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dot. Phys Rev B 53:16338–16346

    Article  CAS  Google Scholar 

  26. Wang C, Shim M, Guyot-Sionnest P (2001) Electrochromic nanocrystal quantum dots. Science 291:2390–2392

    Article  CAS  Google Scholar 

  27. Miyake M, Torimoto T, Sakata T, Mori H, Yoneyama H (1999) Photoelectrochemical characterization of nearly monodisperse CdS nanoparticles-immobilized gold electrodes. Langmuir 15:1503–1507

    Article  CAS  Google Scholar 

  28. Rajh T, Mićić OI, Nozik AJ (1993) Synthesis and characterization of surface-modified colloidal CdTe quantum dots. J Phys Chem 97:11999–12003

    Article  CAS  Google Scholar 

  29. Jacobsson TJ, Edvinsson T (2012) Photoelectrochemical determination of the absolute band edge positions as a function of particle size for ZnO quantum dots. J Phys Chem C 116:15692–15701

    Article  CAS  Google Scholar 

  30. Wang LW, Zunger A (1996) Pseudopotential calculations of nanoscale CdSe quantum dots. Phys Rev B 53:9579–9582

    Article  CAS  Google Scholar 

  31. Jasieniak J, Califano M, Watkins SE (2011) Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5:5888–5902

    Article  CAS  Google Scholar 

  32. Markus TZ, Wu M, Wang L, Waldeck DH, Oron D, Naaman R (2009) Electronic structure of CdSe nanoparticles adsorbed on Au electrodes by an organic linker: Fermi level pinning of the HOMO. J Phys Chem C 113:14200–14206

    Article  CAS  Google Scholar 

  33. Meulenberg RW, Lee JR, Wolcott A, Zhang JZ, Terminello LJ, Buuren T (2009) Determination of the exciton binding energy in CdSe quantum dots. ACS Nano 3:325–330

    Article  CAS  Google Scholar 

  34. Inamdar SN, Ingole PP, Haram SK (2008) Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry. ChemPhysChem 9:2574–2579

    Article  CAS  Google Scholar 

  35. Querner C, Reiss P, Sadki S, Zegorska M, Pron A (2005) Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. Phys Chem Chem Phys 7:3204–3209

    Article  CAS  Google Scholar 

  36. Kucur E, Riegler J, Urban GA, Nann T (2003) Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J Chem Phys 119:2333–2337

    Article  CAS  Google Scholar 

  37. Herrero E, Buller LJ, Abruna HD (2001) Underpotential deposition at single surfaces of Au, Pt, Ag and other materials. Chem Rev 101:1897–1930

    Article  CAS  Google Scholar 

  38. Kolb DM (1978) In: Gerischer H, CW T (eds) Advances in electrochemistry and electrochemical engineering, vol Vol 11. Wiley, New York

    Google Scholar 

  39. Chulkin PV, Aniskevich YM, Streltsov EA, Ragoisha GA (2015) Underpotential shift in electrodeposition of metal adlayer on tellurium and the free energy of metal telluride formation. J Solid State Electrochem 19:2511–2516

    Article  CAS  Google Scholar 

  40. Ragoisha GA, Streltsov EA, Rabchynski SM, Ivanou DK (2011) Cadmium cathodic deposition on polycrystalline р-selenium: dark and photoelectrochemical processes. Electrochim Acta 56:3562–3566

    Article  CAS  Google Scholar 

  41. Mathe MK, Cox SM, Flowers BH, Vaidyanathan R, Pham L, Srisook N, Happek U, Stickney JL (2004) Deposition of CdSe by EC-ALE. J Crystal Growth 271:55–64

    Article  CAS  Google Scholar 

  42. Colletti LP, Flowers BH, Stickney JL (1998) Formation of thin films of CdTe, CdSe, and CdS by electrochemical atomic layer epitaxy. J Electrochem Soc 145:1442–1449

    Article  CAS  Google Scholar 

  43. Lister TE, Stickney JL (1996) Formation of the first monolayer of CdSe on Au(111) by electrochemical ALE. Appl Surf Sci 107:153–160

    Article  CAS  Google Scholar 

  44. Gregory BW, Stickney JL (1991) Electrochemical atomic layer epitaxy (ECALE). J Electroanal Chem 300:543–561

    Article  CAS  Google Scholar 

  45. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376

    Article  CAS  Google Scholar 

  46. Chakrapani V, Baker D, Kamat PV (2011) Understanding the role of the sulfide redox couple (S2−/Sn 2−) in quantum dot-sensitized solar cells. J Am Chem Soc 133:9607–9615

    Article  CAS  Google Scholar 

  47. Pathan HM, Lokhande CD (2004) Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull Mater Sci 27:85–111

    Article  CAS  Google Scholar 

  48. Bard AJ (1982) Design of semiconductor photoelectrochemical systems for solar energy conversion. J Phys Chem 86:172–177

    Article  CAS  Google Scholar 

  49. Solarska R, Rutkowska I, Morand R, Augustynski J (2006) Photoanodic reactions occurring at nanostructured titanium dioxide films. Electrochim Acta 51:2230–2236

    Article  CAS  Google Scholar 

  50. Kazyrevich ME, Malashchonak MV, Mazanik AV, Streltsov EA, Kulak AI, Bhattacharya C (2016) Photocurrent switching effect on platelet-like BiOI electrodes: influence of redox system, light wavelength and thermal treatment. Electrochim Acta 190:612–619

    Article  CAS  Google Scholar 

  51. Podborska A, Gawel B, Pietrzak L, Szymanska IB, Jeszka JK, Lasocha W, Szaciłowski K (2009) Anomalous photocathodic behavior of CdS within the Urbach tail region. J Phys Chem C 113:6774–6784

    Article  CAS  Google Scholar 

  52. Long M, Beranek R, Cai W, Kisch H (2008) Hybrid semiconductor electrodes for light-driven photoelectrochemical switches. Electrochim Acta 53:4621–4626

    Article  CAS  Google Scholar 

  53. Bai Z, Zhang Y (2016) Self-powered UV266a 53:4photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J Alloys Compd 675:325–330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project no. 2/217/GF4 within the state program no. 055 “Scientific and/or scientific and technical activity” (subprogram 101) of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to М. V. Malashchonak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malashchonak, М., Streltsov, E., Mazanik, A. et al. Size-dependent photocurrent switching in chemical bath deposited CdSe quantum dot films. J Solid State Electrochem 21, 905–913 (2017). https://doi.org/10.1007/s10008-016-3442-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3442-x

Keywords

Navigation