Skip to main content

Advertisement

Log in

Supercapacitive performance of homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Self-supported and binder-free electrodes based on homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies (Co3O4/co-modified TiO2 nanotube arrays (m-TNAs)) are prepared via a simple and cost-effective method in this paper. The highly ordered TNAs offer direct pathways for electron and ion transport and can be used as 3D substrate for the decoration of electroactive materials without any binders. Then, by a facile one-step calcination process, the electrochemical performance of the as-obtained carbon layer and oxygen vacancy m-TNAs is approximately 83 times higher than that of pristine TNAs. In addition, Co3O4 nanoparticles are uniformly deposited onto the m-TNAs by a universal chemical bath deposition (CBD) process to further improve the supercapacitive performance. Due to the synergistic effect of m-TNAs and Co3O4 nanoparticles, a maximum specific capacitance of 662.7 F g−1 can be achieved, which is much higher than that of Co3O4 decorated on pristine TNAs (Co3O4/TNAs; 166.2 F g−1). Furthermore, the specific capacitance retains 86.0 % of the initial capacitance after 4000 cycles under a high current density of 10 A g−1, revealing the excellent long-term electrochemical cycling stability of Co3O4/m-TNAs. Thus, this kind of heterostructured Co3O4/m-TNAs could be considered as promising candidates for high-performance supercapacitor electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gu JW, Khan J, Chai ZS, Yuan YF, Yu X, Liu PY, Wu MM, Mai WJ (2016) J Power Sources 303:57–64

    Article  CAS  Google Scholar 

  2. Du XF, Wang QW, Feng TY, Chen XZ, Li L, Li L, Meng XF, Xiong LL, Sun XF, Lu L, Xu YL (2016) Sci Rep 6:20138–20145

    Article  CAS  Google Scholar 

  3. Lu XH, Wang GM, Zhai T, Yu MH, Gan JY, Tong YX, Li Y (2012) Nano Lett 12:1690–1696

    Article  CAS  Google Scholar 

  4. Ge MZ, Cao CY, Huang JY, Li SH, Chen Z, Zhang KQ, Al-Deyab SS, Lai YK (2016) J. Mater. Chem. A 4:6772–6801

    Article  CAS  Google Scholar 

  5. Ge MZ, Li QS, Cao CY, Huang JY, Li SH, Zhang SN, Chen Z, Zhang KQ, Al-Deyab SS, Lai YK (2016) Adv Sci 3:1600152

    Google Scholar 

  6. Zhang YY, Jiang ZL, Huang JY, Lim LY, Li WL, Deng JY, Gong DG, Tang YX, Lai YK, Chen Z (2015) RSC Adv 5:79479–79510

    Article  CAS  Google Scholar 

  7. Nowotny J, Alim MA, Bak T, Idris MA, Ionescu M, Prince K, Sahdan MZ, Sopian K, Teridi MAM, Sigmund W (2015) Chem Soc Rev 44:8424–8442

    Article  CAS  Google Scholar 

  8. Ge MZ, Cao CY, Huang JY, Li SH, Zhang SN, Deng S, Li QS, Zhang KQ, Lai YK (2016) Nanotechnol Rev 5:75–112

    Article  CAS  Google Scholar 

  9. Wang HQ, Wu ZB, Liu Y (2009) J Phys Chem C 113:13317–13324

    Article  CAS  Google Scholar 

  10. Wang YC, Zhang YY, Tang J, Wu HY, Xu M, Peng Z, Gong XG, Zheng GF (2013) ACS NANO 7:9375–9383

    Article  CAS  Google Scholar 

  11. Beuvier T, Richard-Plouet M, Granvalet MM-L, Brousse T, Crosnier O, Brohan L (2010) Inorg Chem 49:8457–8464

    Article  CAS  Google Scholar 

  12. Yu L, Wang ZY, Zhang L, Wu HB, Lou XW (2013) J Mater Chem A 1:122–127

    Article  CAS  Google Scholar 

  13. Salari M, Aboutalebi SH, Konstantinov K, Liu HK (2011) Phys Chem Chem Phys 13:5038–5041

    Article  CAS  Google Scholar 

  14. Yu CP, Wang Y, Zhang JF, Shu X, Cui JW, Qin YQ, Zheng HM, Liu JQ, Zhang Y, Wu YC (2016) New J Chem 40:6881–6889

    Article  CAS  Google Scholar 

  15. Gao B, Li XX, Ma YW, Cao Y, Hu ZY, Zhang XM, Fu JJ, Huo KF, Chu PK (2015) Thin Solid Films 584:61–65

    Article  CAS  Google Scholar 

  16. Zhang CC, Peng CJ, Gao B, Peng X, Zhang XM, Tao JY, Kong JH, Fu JJ (2015) J Nanomater 2015:140596

    Google Scholar 

  17. Wu H, Li DD, Zhu XF, Yang CY, Liu DF, Chen XY, Song Y, Lu LF (2014) Electrochim Acta 116:129–136

    Article  CAS  Google Scholar 

  18. Yang LX, Luo SL, Liu SH, Cai QY (2008) J Phys Chem C 112:8939–8943

    Article  CAS  Google Scholar 

  19. Wu ZB, Dong F, Zhao WR, Wang HQ, Liu Y, Guan BH (2009) Nanotechnol 20:235701–235709

    Article  Google Scholar 

  20. Liang YY, Wang HL, Casalongue HS, Chen Z, Dai HJ (2010) Nano Res 3:701–705

    Article  CAS  Google Scholar 

  21. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  22. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  23. Zhou H, Zou XP, Zhang YR (2016) Electrochim Acta 192:259–267

    Article  CAS  Google Scholar 

  24. Zhu BG, Tang SC, Vongehr S, Xie H, Meng XK (2016) ACS Appl Mater Interfaces 8:4762–4770

    Article  CAS  Google Scholar 

  25. Hu QQ, Gu ZX, Zheng XT, Zhang XJ (2016) Chem Eng J 304:223–231

    Article  CAS  Google Scholar 

  26. Deori K, Ujjain SK, Sharma RK, Deka S (2013) ACS Appl Mater Interfaces 5:10665–10672

    Article  CAS  Google Scholar 

  27. Niu CJ, Meng JS, Wang XP, Han CH, Yan MY, Zhao KN, Xu XM, Ren WH, Zhao YL, Xu L, Zhang QJ, Zhao DY, Mai LQ (2015) Nature Commun 6:7402

    Article  Google Scholar 

  28. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ (2011) Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  29. Li J, Liu Z, Li L, Zhu CX, Hu D (2016) J Electrochem Soc 163:A417–A426

    Article  CAS  Google Scholar 

  30. Yuan CZ, Li JY, Hou LR, Zhang XG, Shen LF, Lou XW (2012) Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

  31. Bian HD, Shu X, Zhang JF, Yuan B, Wang Y, Liu LJ, Xu GQ, Chen Z, Wu YC (2013) Chem Asian J 8:2746–2754

    Article  CAS  Google Scholar 

  32. Qin YQ, Zhang JF, Wang Y, Shu X, Yu CP, Cui JW, Zheng HM, Zhang Y, Wu YC (2016) RSC Adv 6:47669–47675

    Article  CAS  Google Scholar 

  33. Cao CL, Hu CG, Shen WD, Wang SX, Wang JL, Tian YS (2013) J Alloys Compd 550:137–143

    Article  CAS  Google Scholar 

  34. Wang N, Liu QL, Kang DM, Gu JJ, Zhang W, Zhang D (2016) ACS Appl Mater Interfaces 8:16035–16044

    Article  CAS  Google Scholar 

  35. Li W, Zhang LS, Wang Q, Yu Y, Chen Z, Cao CY, Song WG (2012) J Mater Chem 22:15342–15347

    Article  CAS  Google Scholar 

  36. Mole F, Wang J, Clayton DA, Xu C, Pan S (2012) Langmuir 28:10610–10619

    Article  CAS  Google Scholar 

  37. Jeon MS, Yoon WS, Joo H, Lee TK, Lee H (2000) Appl Surf Sci 165:209–216

    Article  CAS  Google Scholar 

  38. Cui HL, Zhao W, Yang CY, Yin H, Lin TQ, Shan YF, Xie Y, Gu H, Huang FQ (2014) J Mater Chem A 2:8612–8616

    Article  CAS  Google Scholar 

  39. Bai BY, Arandiyan H, Li JH (2013) Appl Catal B: Environ 142-143:677–683

    Article  CAS  Google Scholar 

  40. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  41. Cui L, Li J, Zhang XG (2009) J Appl Electrochem 39:1871–1876

    Article  CAS  Google Scholar 

  42. Kong LB, Lang JW, Liu M, Luo YC, Kang L (2009) J Power Sources 194:1194–1201

    Article  CAS  Google Scholar 

  43. Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM (2007) Electrochim Acta 53:400–406

    Article  CAS  Google Scholar 

  44. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem 120:379–385

    Article  Google Scholar 

  45. Xie KY, Li J, Lai YQ, Zhang ZA, Liu YX, Zhang GG, Huang HT (2011) Nanoscale 3:2202–2207

    Article  CAS  Google Scholar 

  46. Yang Y, Kim D, Yang M, Schmuki P (2011) Chem Commun 47:7746–7748

    Article  CAS  Google Scholar 

  47. Wang XH, Wu XX, Xu BG, Hua T (2016) J Solid State Electrochem 20:1303–1309

    Article  CAS  Google Scholar 

  48. Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) J Mater Chem 21:9319–9325

    Article  CAS  Google Scholar 

  49. Lokhande CD, Gujar TP, Shinde VR, Mane RS, Han SH (2007) Electrochem Commun 9:1805–1809

    Article  CAS  Google Scholar 

  50. Hu P, Yan MY, Wang XP, Han CH, He L, Wei XJ, Niu CJ, Zhao KN, Tian XC, Wei QL, Li ZJ, Mai LQ (2016) Nano Lett 16:1523–1529

    Article  CAS  Google Scholar 

  51. Shi Y, Wang JZ, Chou SL, Wexler D, Li HJ, Ozawa K, Liu HK, Wu YP (2013) Nano Lett 13:4715–4720

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program, 2014CB660815), National Natural Science Foundation of China (51502071, 51302060, 51272062, 51402081, 51372063), Specialized Research Fund for the Doctoral Program of Higher Education (20130111120019), and Natural Science Foundation of Anhui Province (1508085ME105, 1608085QE97).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Zheng or Yucheng Wu.

Electronic supplementary material

ESM 1

(DOCX 1685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Wang, Y., Zheng, H. et al. Supercapacitive performance of homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies. J Solid State Electrochem 21, 1069–1078 (2017). https://doi.org/10.1007/s10008-016-3441-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3441-y

Keywords

Navigation