Skip to main content

Advertisement

Log in

Study of quasi-solid electrolyte in dye-sensitized solar cells using surfactant as pore-forming materials in TiO2 photoelectrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel polymer gel electrolyte was used to improve the performance and long-term stability in dye-sensitized solar cells (DSSCs). The polymer gel electrolyte (PGE) was prepared by mixing 5 wt% poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and 2 % TiO2 nanoparticles. The conductivity of PGE with P25 reached 9.98 × 10−3 S/cm, which increased by 34.9 % compared with 7.40 × 10−3 S/cm of PGE without P25, and the diffusion coefficient was also increased by 19.0 %. Different photoelectrodes were obtained by using three kinds of surfactants (cetylamine, octadecylamine, and P123) as pore-forming materials, and their morphologies were contrasted through scanning electron microscopy (SEM). The results showed that gel electrolyte can increase the short-circuit current density (J sc) from 11.01 to 12.99 mA/cm2 in DSSCs. Moreover, unlike the liquid electrolyte, the gel electrolyte is more conducive to the TiO2 photoelectrodes with larger pores. In conclusion, the efficiency of DSSC with gel electrolyte and P123 as pore-forming material was 6.73 %, which was 12 % higher than the liquid electrolyte in the same test condition. In addition, the sealed gel electrolyte DSSCs showed better stability than did liquid electrolyte DSSCs during nearly 600 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Peng X, Feng YQ, Meng SX, Zhang B (2014) Electrochim Acta 115:255–262

    Article  CAS  Google Scholar 

  3. Yang YB, Peng X, Chen S, Lin LP, Zhang B, Feng YQ (2014) Ceram Int 40:15199–15206

    Article  CAS  Google Scholar 

  4. Wang ZW, Xu HX, Zhang ZY, Zhou XY, Pang SP, Cui GL (2014) Chin J Chem 32:491–497

    Article  CAS  Google Scholar 

  5. Jia YJ, Gou FL, Fang R, Jing HW, Zhu ZP (2014) Chin J Chem 32:513–520

    Article  CAS  Google Scholar 

  6. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  7. Wang P, SM Zakeeruddin, I Exnarb, M Grätzel (2002) Chem Commun (24):2972–2973

  8. Komiya R, Han L, Yamanaka R, Islam A, Mitate T (2004) J Photoch Photobio A 164:123–127

    Article  CAS  Google Scholar 

  9. Chen CL, Teng HS, Lee YL (2011) Adv Mater 23:4199–4204

    Article  CAS  Google Scholar 

  10. Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR (2014) Electrochim Acta 130:76–81

    Article  CAS  Google Scholar 

  11. Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S (2003) J Phys Chem B 107:4374–4381

    Article  CAS  Google Scholar 

  12. Wang P, Zakeeruddin SM, Baker RH, Grätzel M (2004) Chem Mater 16:2694–2696

    Article  CAS  Google Scholar 

  13. Sun SJ, Song J, Feng RX, Shan ZQ (2012) Electrochim Acta 69:51–55

    Article  CAS  Google Scholar 

  14. O’Regan B, Lenzmann F, Muis R, Wienke J (2002) Chem Mater 14:5023–5029

    Article  Google Scholar 

  15. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425

    Article  CAS  Google Scholar 

  16. Ren YJ, Zhang ZC, Fang SB, Yang MZ, Cai SM (2002) Solar Energ Mat Sol C 71:253–259

    Article  CAS  Google Scholar 

  17. Xia JB, Li FY, Huanga CH, Zhai J, Jiang L (2006) Solar Energ Mat Sol C 90:944–952

    Article  CAS  Google Scholar 

  18. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundara WJMJSR, Mellander BE (2013) J Appl Electrochem 43:891–901

    Article  CAS  Google Scholar 

  19. Yang HX, Huang ML, Wu JH, Lan Z, Hao SC, Lin JM (2008) Mater Chem Phy 110:38–42

    Article  CAS  Google Scholar 

  20. Arof AK, Aziz MF, Noor MM, Careem MA, Bandara LRAK, Thotawatthage CA, Rupasinghe WNS, Dissanayake MAKL (2014) Int J Hydrogen energ 39:2929–2935

    Article  CAS  Google Scholar 

  21. Dai YH, Li XJ, Fang YY, Shi QF, Lin Y, Yang MS (2012) Acta Phys -Chim Sin 28(11):2669–2675

    CAS  Google Scholar 

  22. Li MY, Feng SJ, Fang SB, Xiao XR, Li XP, Zhou XW, Lin Y (2007) Electrochim Acta 52:4858–4863

    Article  CAS  Google Scholar 

  23. Wang P, Zakeeruddin SM, Grätzel M (2004) J Fluor Chem 125:1241–1245

    Article  CAS  Google Scholar 

  24. Yang HS, Ileperuma OA, Shimomura M, Murakami K (2009) Sol Energ Mat Sol C 93:1083–1086

    Article  CAS  Google Scholar 

  25. Park JY, Lee JW, Park KH, Kim TY, Yim SH, Zhao XG, Gu HB, Jin EM (2013) Polym Bull 70:507–515

    Article  CAS  Google Scholar 

  26. Chen CL, Chang TW, Su SC, Teng HS, Lee YL (2014) J Power Sources 247:406–411

    Article  CAS  Google Scholar 

  27. Huang XW, Deng JY, Xu L, Shen P, Zhao B, Tan ST (2012) Acta Chim Sin 70:1604–1610

    Article  CAS  Google Scholar 

  28. Zhang J, Han HW, Wu SJ, Xu S, Yang Y, Zhou CH, Zhao XZ (2007) Solid State Ionics 178:1595–1601

    Article  CAS  Google Scholar 

  29. Lee YL, Shen YJ, Yang YM (2008) Nanotechnology 19:455–201

    Google Scholar 

  30. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Nanotechnology 15:1861–1865

    Article  CAS  Google Scholar 

  31. Ahn SH, Koh JH, Seo JA, Kim JH (2010) Chem Commun 46:1935–1193

    Article  CAS  Google Scholar 

  32. Bakhshayesh AM, Farajisafiloo N (2015) Appl Surf Sci 331:58–65

    Article  CAS  Google Scholar 

  33. Wu CC, Jia LC, Guo SY, Han S, Chi B, Pu J, Jian L (2013) ACS Appl Mater Inter 5:7886–7892

    Article  CAS  Google Scholar 

  34. Yang CH, Ho WY, Yang HH, Hsueh ML (2010) J Mater Chem 20:6080–6085

    Article  CAS  Google Scholar 

  35. Phadke S, Pasquier AD, Birnie DP (2011) J Phys Chem A 115:18342–18347

    CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 21476162), Natural Science Foundation of Tianjin (No. 10JCZDJC23700), and China International Science and Technology Project (No. 2012DFG41980). CAST Foundation (No. CAST201236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxian Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Chen, S., Feng, Y. et al. Study of quasi-solid electrolyte in dye-sensitized solar cells using surfactant as pore-forming materials in TiO2 photoelectrodes. J Solid State Electrochem 21, 715–724 (2017). https://doi.org/10.1007/s10008-016-3409-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3409-y

Keywords

Navigation