Skip to main content
Log in

Influence of chemical equilibrium in introduced oxygen vacancies on resistive switching in epitaxial Pt-CeO2 system

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We investigate the introduction of oxygen vacancies by the interaction of Pt with CeO2(111) (ceria) thin epitaxial film grown on Cu(111) and the influence of the vacancies on resistive switching behavior. For this purpose, we used X-ray photoelectron spectroscopy and conductive atomic force microscopy. We found out that after Pt deposition, the ceria film was partially reduced. By our estimation, the reduction occurs not only at the Pt/CeO2 interface, but also on the surface of the ceria film which is not covered by Pt, after Pt deposition and annealing. A different distribution of oxygen vacancies in the film proves to have an influence on the resistance switching process of the film. Finally, the proper balance between the reduced and the unreduced species in order to obtain relatively stable repeatable resistance switch with clear resistance window is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goux L, Wang XP, Chen YY, Pantisano L, Jossart N, Govoreanu B, Kittl JA, Jurczak M, Altimime L, Wouters DJ (2011) Roles and effects of TiN and Pt electrodes in resistive-switching HfO2 systems. Electrochem Solid St 14(6):H244–H246

    Article  CAS  Google Scholar 

  2. Lee MJ, Seo S, Kim DC, Ahn SE, Seo DH, Yoo IK, Baek IG, Kim DS, Byun IS, Kim SH, Hwang IR, Kim JS, Jeon SH, Park BH (2007) A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv Mater 19(1):73–76

    Article  CAS  Google Scholar 

  3. Yang JJ, Pickett MD, Li X, OhlbergDouglas AA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3(7):429–433

    Article  CAS  Google Scholar 

  4. Dou C, Kakushima K, Ahmet P, Tsutsui K, Nishiyama A, Sugii N, Natori K, Hattori T, Iwai H (2012) Resistive switching behavior of a CeO2 based ReRAM cell incorporated with Si buffer layer. Microelectron Reliab 52(4):688–691

    Article  CAS  Google Scholar 

  5. Lin C-Y, Lee D-Y, Wang S-Y, Lin C-C, Tseng T-Y (2008) Reproducible resistive switching behavior in sputtered CeO2 polycrystalline films. Surf Coat Tech 203(5–7):480–483

    Article  CAS  Google Scholar 

  6. Gao P, Wang Z, Fu W, Liao Z, Liu K, Wang W, Bai X, Wang E (2010) In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41(4):301–305

    Article  CAS  Google Scholar 

  7. Sun X, Bing S, Lifeng L, Xu N, Xiaoyan L, Ruqi H, Jinfeng K, Xiong G, Ma TP (2009) Resistive switching in CeOx films for nonvolatile memory application. Electron Devic Lett, IEEE 30(4):334–336

    Article  CAS  Google Scholar 

  8. Ismail M, Huang C-Y, Panda D, Hung C-J, Tsai T-L, Jieng J-H, Lin C-A, Chand U, Rana A, Ahmed E, Talib I, Nadeem M, Tseng T-Y (2014) Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res Lett 9(1):45

    Article  Google Scholar 

  9. Keating PRL, Scanlon DO, Watson GW (2013) Computational testing of trivalent dopants in CeO2 for improved high-k dielectric behaviour. J Mater Chem C 1(6):1093–1098

    Article  CAS  Google Scholar 

  10. Nolan M, Fearon JE, Watson GW (2006) Oxygen vacancy formation and migration in ceria. Solid State Ionics 177(35–36):3069–3074

    Article  CAS  Google Scholar 

  11. Aneggi E, Boaro M, Leitenburg C, Dolcetti G, Trovarelli A (2006) Insights into the redox properties of ceria-based oxides and their implications in catalysis. J Alloy Compd 408–412:1096–1102

    Article  Google Scholar 

  12. Kim DC, Seo S, Ahn SE, Suh D-S, Lee MJ, Park B-H, Yoo IK, Baek IG, Kim H-J, Yim EK, Lee JE, Park SO, Kim HS, Chung U-I, Moon JT, Ryu BI (2006) Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl Phys Lett 88(20):202102

    Article  Google Scholar 

  13. Matolín V, Matolínová I, Václavů M, Khalakhan I, Vorokhta M, Fiala R, Piš I, Sofer Z, Poltierová-Vejpravová J, Mori T, Potin V, Yoshikawa H, Ueda S, Kobayashi K (2010) Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering. Langmuir 26(15):12824–12831

    Article  Google Scholar 

  14. Shubhakar K, Pey KL, Kushvaha SS, O’Shea SJ, Raghavan N, Bosman M, Kouda M, Kakushima K, Iwai H (2011) Grain boundary assisted degradation and breakdown study in cerium oxide gate dielectric using scanning tunneling microscopy. Appl Phys Lett 98(7):072902

    Article  Google Scholar 

  15. Yoshitake M, Vaclavu M, Chundak M, Matolin V, Chikyow T (2013) Epitaxial CeO2 thin films for a mechanism study of resistive random access memory (ReRAM). J Solid St Electr 17(12):3137–3144

    Article  CAS  Google Scholar 

  16. Dvorak F, Stetsovych O, Steger M, Cherradi E, Matolinova I, Tsud N, Skoda M, Skala T, Myslivecek J, Matolin V (2011) Adjusting morphology and surface reduction of CeO2(111) thin films on Cu(111). JPhys Chem C 115(15):7496–7503

    Article  CAS  Google Scholar 

  17. Wrobel R, Suchorski Y, Becker S, Weiss H (2008) Cerium oxide layers on the Cu(111) surface: substrate-mediated redox properties. Surf Sci 602(2):436–442

    Article  CAS  Google Scholar 

  18. Staudt T, Lykhach Y, Hammer L, Schneider MA, Matolín V, Libuda J (2009) A route to continuous ultra-thin cerium oxide films on Cu(111. Surf Sci 603(23):3382–3388

    Article  CAS  Google Scholar 

  19. Zhou Y, Perket JM, Zhou J (2010) Growth of Pt nanoparticles on reducible CeO2(111) thin films: effect of nanostructures and redox properties of ceria. J Phys Chem C 114(27):11853–11860

    Article  CAS  Google Scholar 

  20. Zhou Y, Zhou J (2010) Growth and sintering of Au − Pt nanoparticles on oxidized and reduced CeOx(111) thin films by scanning tunneling microscopy. J Phys Chem Lett 1(3):609–615

    Article  CAS  Google Scholar 

  21. Šutara F, Cabala M, Sedláček L, Skála T, Škoda M, Matolín V, Prince KC, Cháb V (2008) Epitaxial growth of continuous CeO2(111) ultra-thin films on Cu(111. Thin Solid Films 516(18):6120–6124

    Article  Google Scholar 

  22. Prokofiev AV, Shelykh AI, Melekh BT (1996) Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series. J Alloy Compd 242(1–2):41–44

    Article  CAS  Google Scholar 

  23. Szabová L, Stetsovych O, Dvořák F, Farnesi Camellone M, Fabris S, Mysliveček J, Matolín V (2012) Distinct physicochemical properties of the first ceria monolayer on Cu(111. J Phys Chem C 116(11):6677–6684

    Article  Google Scholar 

Download references

Acknowledgments

M. Chundak acknowledges the ongoing financial support by the Japan Society for the Promotion of Science (JSPS) under the “Postdoctoral Fellowship for Overseas Researchers” program. This work was also supported by the “Charles University—NIMS Joint Graduate School Program.” One of the authors (M.C.) is also thankful to the Grant Agency of the Charles University (GAUK 645412) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykhailo Chundak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chundak, M., Yoshitake, M., Vaclavu, M. et al. Influence of chemical equilibrium in introduced oxygen vacancies on resistive switching in epitaxial Pt-CeO2 system. J Solid State Electrochem 21, 657–664 (2017). https://doi.org/10.1007/s10008-016-3400-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3400-7

Keywords

Navigation