Skip to main content
Log in

Investigation on structural, morphological, and electrochemical properties of mesoporous cobalt oxide-infiltrated NaY zeolite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report the synthesis and characterization of a new mesoporous cobalt oxide-infiltrated NaY zeolite prepared by ion-exchange route. The scanning electronic microscopy (SEM) image shows homogenous and uniform grains size distributions smaller than 1 μm, unlike to CoOx particles, elaborated under the same conditions. The energy dispersion spectroscopy (EDS) data confirm the presence of cobalt, oxygen, silicon, and aluminum. The X-ray diffraction indicates a partial crystallization of cobalt oxide and the formation of new phases. N2 adsorption-desorption measurement shows a high-specific surface area for the modified material (579 m2 g−1), with Barrett-Joyner-Halenda (BJH) pore diameters in the range (3–8 nm). The cyclic voltammetry indicates a typical faradic process, and the electrochemical impedance spectroscopy exhibits Warburg diffusion at low frequencies. The charge-discharge curve shows a clear improvement in the charge capacity of the modified material compared to CoOx, due to the increased specific surface area. The galvanostatic charge-discharge tests of the modified electrode exhibit a typical battery behavior preceded by a pseudo-capacitive phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang J, Liu H, Martens WN, Frost RL (2010) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 114(1):111–119

    Article  CAS  Google Scholar 

  2. Xiuyan X, Jinjun L, Zhengping H (2006) CeO2-Co3O4 catalysts for low-temperature CO oxidation. J Rare Earths 24:172–176

    Article  Google Scholar 

  3. CoAC LJ, Serebrennikova I, Abel CM, Birss VI (2005) Structural and electrochemical studies of Co oxide films formed by the sol-gel technique. J Mat Sci 40(15):4039–4052

    Article  Google Scholar 

  4. Wang L, Peng Z, Lei M, Fu X (2012) Solvothermal growth of cobalt oxide hexagon nanodiscs. Key Eng Mater 512–515:166–169.

  5. Chen C, Cho M, Lee Y (2015) Electrochemical preparation and energy storage properties of nanoporous Co (OH)2 via pulse current deposition. J Mat Sci 50(19):6491–6497

    Article  CAS  Google Scholar 

  6. Jena A, Munichandraiah N, Shivashankar SA (2012) Morphology controlled growth of meso-porous Co3O4 nanostructures and study of their electrochemical capacitive behavior. J Electrochem Soc 159(10):A1682–A1689

    Article  CAS  Google Scholar 

  7. Feng J, Zeng HC (2003) Size-controlled growth of Co3O4 nanocubes. Chem Mater 15(14):2829–2835

    Article  CAS  Google Scholar 

  8. Meher SK, Rao GR (2011) Effect of microwave on the nanowire morphology, optical, magnetic, and pseudo-capacitance behavior of Co3O4. J Phys Chem C 115:25543–25556

    Article  CAS  Google Scholar 

  9. Nam KM, Shim JH, Han DW, et al. (2010) Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology. Chem Mater 22(15):4446–4454

    Article  CAS  Google Scholar 

  10. Cui L, Li J, Zhang XG (2009) Preparation and properties of Co3O4 nanorods as supercapacitors material. J Appl Electrochem 39:1871–1876

    Article  CAS  Google Scholar 

  11. Natile MM, Glisenti A (2003) New NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: synthesis and characterization. Chem Mater 15(13):2502–2510

    Article  CAS  Google Scholar 

  12. Musat V, Fortunato E, Botelho do Rego AM, Monteiro R (2008) Sol–gel cobalt oxide–silica nanocomposite thin films for gas sensing applications. Thin Solid Films 516:1499–1502

    Article  CAS  Google Scholar 

  13. Rosen J, Hutchings GS, Jiao F (2013) Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J Am Chem Soc 135(11):4516–4521

    Article  CAS  Google Scholar 

  14. Vezvaie M, Kalisvaart P, Fritzsche H, et al. (2014) The penetration depth of chemical reactions in a thin-film Co3O4 supercapacitor electrode. J Electrochem Soc 161(5):A798–A802

    Article  CAS  Google Scholar 

  15. Yao W, Yang J, Wang J, Nuli Y (2008) Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery. J Electrochem Soc 155(12):A903–A908

    Article  CAS  Google Scholar 

  16. Xie Y, Dong F, Heinbuch S, Roccab JJ, Bernstein ER (2010) Oxidation reactions on neutral cobalt oxide clusters: experimental and theoretical studies. Phys Chem Chem Phys 12:947–959

    Article  CAS  Google Scholar 

  17. Liao L, Zhang Q, Su Z, et al. (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nanotechnol 9:1–5

    Article  Google Scholar 

  18. Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York

    Google Scholar 

  19. Schweitzer GK, Pesterfield LL (2010) The aqueous chemistry of the elements. Oxford University Press, New York

    Google Scholar 

  20. Zhuiykov S (2007) Semiconductor sensor using cobalt oxyhydroxide CoOOH for carbon monoxide detection at low temperatures. Mater Forum 31:144–151

    CAS  Google Scholar 

  21. Han Y, Dong L, Feng J, Li D, Li X, Liu S (2015) Cobalt oxide modified porous carbon anode enhancing electrochemical performance for Li-ion batteries. Electrochim Acta 167:246–253

    Article  CAS  Google Scholar 

  22. Khan IA, Nasim F, Choucair M, Ullah S, Badshah A, Nadeem MA (2016) Cobalt oxide nanoparticle embedded N-CNTs: lithium ion battery applications. RSC Adv 6:1129–1135

    Article  CAS  Google Scholar 

  23. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216:298–312

    Article  CAS  Google Scholar 

  24. Xu X, Wang J, Long Y (2006) Zeolite-based materials for gas sensors. Sensors 6:1751–1764

    Article  CAS  Google Scholar 

  25. Lutz W (2014) Zeolite Y: synthesis, modification, and properties—a case revisited. Adv Mater SciEng 2014:1–20

    Google Scholar 

  26. Chester AW, Derouane EG (2009) Zeolite characterization and catalysis: a tutorial. Springer, Heidelberg

    Book  Google Scholar 

  27. Thoret J, Man PP, Fraissard J (1995) Insertion of vanadium or molybdenum as oxides in LaNaY zeolite: comparison with nay. J Chem Soc Faraday Trans 91(6):1037–1043

    Article  CAS  Google Scholar 

  28. Chen H, Matsumoto A, Nishimiya N, Tsutsumi K (1999) Preparation and characterization of TiO2 incorporated Y-zeolite. Colloid Surf A 157:295–305

    Article  CAS  Google Scholar 

  29. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37(11):1351–1354

    Article  CAS  Google Scholar 

  30. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley& Sons, New York

    Google Scholar 

  31. Abdi A, Trari M (2013) Investigation on photoelectrochemical and pseudo-capacitance properties of the non-stoichiometric hematite α-Fe2O3 elaborated by sol–gel. Electrochim Acta 111:869–875

    Article  CAS  Google Scholar 

  32. Cerny J, Micka K (1989) Voltametric study of an iron electrode in alkaline electrolytes. J Power Sources 25:111–122

    Article  CAS  Google Scholar 

  33. Hang BT, Yoon SH, Okada S, Yamaki JI (2007) Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes. J Power Sources 168(2):522–532

    Article  CAS  Google Scholar 

  34. Raistrick ID, Franceschetti DR, Macdonald JR (2003) In. Barsoukov E, Macdonald JR ed) Impedance spectroscopy, 2nd edn. John Wiley & Sons, New Jersey

  35. Keswani M, Raghavan S, Deymier P (2013) A novel way of detecting transient cavitation near a solid surface during megasonic cleaning using electrochemical impedance spectroscopy. Microelectron Eng 108:11–15

    Article  CAS  Google Scholar 

  36. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer-Verlag, New York

    Book  Google Scholar 

  37. Feliu Jr S, Barajas R, Bastidas JM, Morcillo M, Feliu S (1993) In. Scully JR, Silverman DC, Kendig MW (eds) Electrochemical impedance: analysis and interpretation, ASTM STP 1188. American Society for Testing and Materials, Philadelphia

  38. Lide DR (ed) (2004) CRC handbook of chemistry and physics, 84th edn. Florida, CRC Press, Boca Raton

    Google Scholar 

  39. Flury M, Gimmi T (2002) In: Dane JH, Topp GC (eds) Methods of soil analysis, part 4-physical methods, Soil Science Society of America, Madison, WI

  40. Zhang SM, Zhang JX, SJ X, Yuan XJ, He BC (2015) Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries. Electrochim Acta 88:287–293

    Article  Google Scholar 

  41. Green M, Fielder E, Scrosati B, Wachtler M, Moreno JS (2003) Structured silicon anodes for lithium battery applications. Electrochem Solid-State Lett 6(5):A75–A79

    Article  CAS  Google Scholar 

  42. Jorcin JB, Orazemb ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. J. Douglade, Dr. A. May, Dr. S. Belkhiri, and Dr. B. Bellal, for providing XRD analysis, SEM images, BET analysis, and UV-visible NIR spectra, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, A., Aaboubi, O. & Trari, M. Investigation on structural, morphological, and electrochemical properties of mesoporous cobalt oxide-infiltrated NaY zeolite. J Solid State Electrochem 21, 383–390 (2017). https://doi.org/10.1007/s10008-016-3378-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3378-1

Keywords

Navigation