Skip to main content
Log in

On the electrochemical behavior of selanyl azulenes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of substituted 1-phenylselanyl azulenes has been established by cyclic, differential pulse, and rotating disk electrode voltammetric methods. The redox potentials and the number of electrons exchanged in the main redox processes have been examined in connection with the electronic effects of their substituents. Controlled potential electrolyses have been performed in order to point out the products associated to the redox peaks. A mechanism to explain the redox processes has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Jaworski JS (2012) Electrochemistry of organic selenium and tellurium compounds. Patai’s Chemistry of Functional Groups John Wiley & Sons.

    Google Scholar 

  2. Jin J, Li B, Lorance E, Okumura N, Macia-Ruvalcaba N, Zakai U, Zhang S-Z, Block E, Glass R (2010) Electrochemical and chemical oxidation of dithia-, diselena-, ditellura-, selenathia-, and tellurathiamesocycles and stability of the oxidized species. J Org Chem 75:1997–2009

    Article  Google Scholar 

  3. Detty MR, Logan ME (2004) One- and two-electron oxidations and reductions of organoselenium and organotellurium compounds. Adv Phys Or g Chem 39:79–145

    CAS  Google Scholar 

  4. Degrand C, Gautier C, Prest R (1988) Cathodic reduction of diphenyl selenide in acetonitmle. J Electroanal Chem 248:381–386

    Article  CAS  Google Scholar 

  5. Tepecik A, Altin Z, Erturan S (2008) The diorganoselenium and selenides compounds electrochemistry. J Autom Methods Manag Chem, Article ID 839153:6

    Google Scholar 

  6. Combs G, Levander O, Spallholtz J, Oldfield J (1987) Selenium in biology and medicine. AVI, Westport, CT

    Google Scholar 

  7. Lu J, Jiang C, Kaeck M, Ganther H, Ip C, Thompson H (1995) Cellular and metabolic effects of triphenylselenonium chloride in a mammary cell culture model. Carcinogenesis 16:513–517

    Article  CAS  Google Scholar 

  8. Soriano-Garcia M (2004) Organoselenium compounds as potential therapeutic and chemopreventive agents. A Review Curr Med Chem 11:1657–1669

    Article  CAS  Google Scholar 

  9. Mlochowski J, Kloc K, Lisiak R, Potaczek P, Wojtowicz H (2007) Developments in the chemistry of selenaheterocyclic compounds of practical importance in synthesis and medicinal biology. Arkivoc vi:14–46

  10. Pietka-Ottlik M, Wojtowicz-Mlochowska H, Kolodziejczyk K, Piasecki E, Mlochowski J (2008) New organoselenium compounds active against pathogenic bacteria, fungi and viruses. Chem Pharm Bull 56:1423–1427

    Article  CAS  Google Scholar 

  11. Ip C, Lisk DJ, Ganther H, Thompson H (1997) Triphenylselenonium and diphenylselenide in cancer chemoprevention: comparative studies of anticarcinogenic efficacy, tissue selenium levels and excretion profile. J Anticancer Res 17:3195–3199

    CAS  Google Scholar 

  12. Nefedov VA (1968) Substitution reaction with copper salts. IV. Formation of C-Se and C-Te bonds. J Gen Chem [USSR] 38:2122–2123

    Google Scholar 

  13. Edson d A, dos S, Ernest H, Ruoli B, James CB, Camila S, Suniga T, Danielle B, Renata TP, Alexandra M, Antunes M, Matilde M, Marques M, de F, Matos C, Dênis P, de L (2013) Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg Med Chem Lett 23:4669–4673

    Article  Google Scholar 

  14. Razus AC, Birzan L, Hanganu A, Cristea M, Enache C, Ungureanu E-M, Soare ML (2014) 1-Phenylselanylazulenes: synthesis and selenium atom oxidation. Monatsh Chem 145:1999–2009

    Article  CAS  Google Scholar 

  15. Razus AC, Birzan L, Cristea M, Dragu EA, Hanganu A (2011) Azulen-1-yl diazenes substituted at C-3 with phenyl-chalcogene moieties: dye synthesis, product characterization and properties. Monatsh Chem 142:1271–1282

    Article  CAS  Google Scholar 

  16. Inel GA, Soare ML, Bujduveanu MR, Varga Ş, Ungureanu EM, Birzan L (2014) Electrochemical characterization of some azulene selenium compounds. U.P.B. Sci Bull Series B 76:3–10

    CAS  Google Scholar 

  17. Inel GA, Cioates NC, Mirsky V, Birzan L, Ungureanu EM (2015) Films obtained by electrochemistry from (6-methylazulene-1-yl) (phenyl) selane. U.P.B. Sci Bull Series B 77:3–18

    CAS  Google Scholar 

  18. Buica GO, Ungureanu EM, Birzan L, Razus AC, Bujduveanu MR (2011) Films of poly (4-azulen-1-yl-2,6-bis (2-thienyl) pyridine) for heavy metal ions complexation. Electrochim Acta 56:5028–5036

    Article  CAS  Google Scholar 

  19. Jouikov VV, Fattakhova DS, Kozhevnikov AY (2001) The potential-determining reaction of electrogenerated cation radicals of diphenylselenide: dimerization versus disproportionation. Electrochim Acta 46:807–812

    Article  CAS  Google Scholar 

  20. Engman L, Perssor J, Andersson CM, Berglund M (1992) Application of the Hammett equation to the electrochemical oxidation of diaryl chalcogenides and aryl methyl chalcogenides. J Chem Soc Perkin Trans 2:1309–1313

    Article  Google Scholar 

  21. Engman L, Lind J, Merenyi G (1994) Redox properties of diaryl chalcogenides and their oxides. J Phys Chem 98:3174–3182

    Article  CAS  Google Scholar 

  22. Jouikov V (1995) Anodic reactivity of alkylphenylselenides. J Electroanal Chem 398:159–164

    Article  Google Scholar 

  23. Shoji T, Okada K, Ito S, Toyota K, Morita N (2010) Synthesis of 1-(pyridyl, quinolyl, and isoquinolyl) azulenes by Reissert–Henze type reaction. Tetrahedron Lett 51:5127–5130

    Article  CAS  Google Scholar 

  24. Shoji T, Ito S, Toyota K, Yasunami M, Morita N (2010) The novel transition metal free synthesis of 1,1′-biazulene. Tetrahedron Lett 48:4999–5002

    Article  Google Scholar 

  25. Shoji T, Higashi H, Ito S, Toyota K, Yasunami M, Morita N (2008) Synthesis and redox behavior of 1-azulenyl sulfides and efficient synthesis of 1,1′-biazulenes. Eur J Org Chem 7:1242–1252

    Article  Google Scholar 

  26. Shoji T, Ito S, Toyota K, Iwamoto T, Yasunami M, Morita N (2009) Synthesis and redox behavior of 1,3-bismethylthio-) and 1,3-bis (phenylthio) azulenes bearing 2- and 3-thienyl substituents by palladium-catalyzed cross-coupling reaction of 2- and 6-haloazulenes with thienylmagnesium ate complexes. Eur J Org Chem 25:4307–4315

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the UEFISCDI projects PN-II-ID-PCE-2011-3-1067 Ctr. No. 15/2011, PN-II-PT-PCCA-2013-4-2151 Ctr. No. 236/2014, and ID PN-II-RU-TE-2014-4-0594 Ctr. No. 10/2015, and the work done by Drd. Georgiana Anca Inel has been supported by the Sectorial Operational Programme Human Resources Development 2007–2013 (InnoRESEARCH) 132395, financed by the European Social Fund and the Romanian Government under the contract number POSDRU/159/1.5/S/132395.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liviu Birzan or Eleonora-Mihaela Ungureanu.

Electronic supplementary material

Fig S1

(DOCX 149 kb)

Fig S2

(DOCX 182 kb)

Fig S3

(DOCX 119 kb)

Fig S4

(DOCX 156 kb)

Fig S5

(DOCX 188 kb)

Fig S6

(DOCX 170 kb)

Fig S7

(DOCX 189 kb)

Fig S8

(DOCX 203 kb)

Fig S9

(DOCX 193 kb)

Fig S10

(DOCX 169 kb)

Fig S11

(DOCX 86 kb)

Fig S12

(DOCX 86 kb)

Fig S13

(DOCX 370 kb)

Fig S14

(DOCX 56 kb)

Fig S15

(DOCX 90 kb)

Fig S16

(DOCX 76 kb)

Fig S17

(DOCX 83 kb)

Fig S18

(DOCX 71 kb)

Fig S19

(DOCX 72 kb)

Fig S20

(DOCX 82 kb)

Fig S21

(DOCX 91 kb)

Fig S22

(DOCX 107 kb)

Fig S23

(DOCX 110 kb)

Fig S24

(DOCX 98 kb)

Fig S25

(DOCX 105 kb)

Fig S26

(DOCX 79 kb)

Fig S27

(DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buica, GO., Soare, ML., Inel, G.A. et al. On the electrochemical behavior of selanyl azulenes. J Solid State Electrochem 20, 3151–3164 (2016). https://doi.org/10.1007/s10008-016-3371-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3371-8

Keywords

Navigation