Skip to main content
Log in

Kinetics of anodic dissolution of Zr in acidic fluoride media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of anodic dissolution of Zr in hydrofluoric acid (HF) was investigated using potentiodynamic polarization experiments. At lower potentials, an active region with a rapid increase in current with the potential was observed and at higher potentials, a large passivation current plateau was observed. The current decreased only slightly with potential in the passive region. Scanning electron micrographs confirmed that the passivation is incomplete in the region where current exhibits a plateau and x-ray photoelectron spectroscopic analysis showed that oxides and oxyfluorides are present on the surface. A four-step mechanism with two adsorbed intermediate species was evaluated and the model captures the essential characteristics of the polarization plots. The results suggest that \( {HF}_2^{-} \) species participates in the chemical dissolution step and actual HF participates in the electrochemical dissolution step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen Y, Urquidi-Macdonald M, Macdonald DD (2006) J Nucl Mater 348:133–147

    Article  CAS  Google Scholar 

  2. Ai J, Chen Y, Urquidi-Macdonald M, Macdonald DD (2008) J Nucl Mater 379:162–168

    Article  CAS  Google Scholar 

  3. Zerbino JO, Visintin A, Triaca WE (2008) J Solid State Electrochem 12:545–552

    Article  CAS  Google Scholar 

  4. Rosalbino F, Macciò D, Saccone A, Angelini E, Delfino S (2010) J Solid State Electrochem 14:1451–1455

    Article  CAS  Google Scholar 

  5. Smith T, Hill GR (1958) J Electrochem Soc 105:117–121

    Article  CAS  Google Scholar 

  6. Schultze JW, Lohrengel MM (2000) Electrochim Acta 45:2499–2513

    Article  CAS  Google Scholar 

  7. Olsson COA, Verge MG, Landolt D (2004) J Electrochem Soc 151:B652–B660

    Article  CAS  Google Scholar 

  8. Stancheva M, Bojinov M (2013) J Solid State Electrochem 17:1271–1283

    Article  CAS  Google Scholar 

  9. Ellerbrock D, Macdonald DD (2014) J Solid State Electrochem 18:1485–1493

    Article  CAS  Google Scholar 

  10. Straumanis ME, James WJ, Neiman AS (1959) Corros 15:20–24

    Article  Google Scholar 

  11. Nishio S (2012) Corros Sci 65:567–570

    Article  CAS  Google Scholar 

  12. Wall Van der EM, Whitener EM (1959) Ind Eng Chem 51:51–54

    Article  Google Scholar 

  13. James WJ, Custead WG, Straumanis ME (1960) J Phys Chem 64:286–288

    Article  CAS  Google Scholar 

  14. Meyer RE (1964) J Electrochem Soc 111:147–155

    Article  CAS  Google Scholar 

  15. Meyer RE (1965) J Electrochem Soc 112:684–688

    Article  CAS  Google Scholar 

  16. Hornkjol S (1988) Electrochim Acta 33:289–292

    Article  Google Scholar 

  17. Sutter EMM, Hlawka F, Cornet A (1990) Corros 46:537–544

    Article  CAS  Google Scholar 

  18. Prono J, Jaszay T, Caprani A, Frayret JP (1995) J Appl Electrochem 25:1031–1037

    CAS  Google Scholar 

  19. Klein R (1997) Corros 53:327–332

    Article  CAS  Google Scholar 

  20. Lohrengel MM (1993) Mat Sci Engg R 11:243–294

    Article  Google Scholar 

  21. Van Overmeere Q, Proost J (2011) Electrochim Acta 56:10507–10515

    Article  CAS  Google Scholar 

  22. Cattarin S, Musiani M, Tribollet B (2002) J Electrochem Soc 149:B457–B464

    Article  CAS  Google Scholar 

  23. Bojinov M, Cattarin S, Musiani M, Tribollet B (2003) Electrochim Acta 48:4107–4117

    Article  CAS  Google Scholar 

  24. Sapra S, Li H, Wang Z, Suni II (2005) J Electrochem Soc 152:B193–B197

    Article  CAS  Google Scholar 

  25. Fasmin F, Praveen BVS, Ramanathan S (2015) J Electrochem Soc 162:H604–H610

    Article  CAS  Google Scholar 

  26. Jayaraj J, Krishnaveni P, Nanda Gopala Krishna D, Mallika C, Kamachi Mudali U (2016) J Nucl Mater 473:157–166

    Article  CAS  Google Scholar 

  27. Fukuda T, Mizuno T (1996) Corros Sci 38:1085–1091

    Article  CAS  Google Scholar 

  28. Kolasinski KW (2005) J Electrochem Soc 152:J99–J104

    Article  CAS  Google Scholar 

  29. Messnaoui B (2008) J Solut Chem 37:715–726

    Article  CAS  Google Scholar 

  30. Jayaraj J, Nanda Gopala Krishna D, Mallika C, Kamachi Mudali U (2015) Mat Chem Phys 151:318–329

    Article  CAS  Google Scholar 

  31. Morant C, Sanz JM, Galan L, Soriano L (1989) Surf Sci 218:331–345

    Article  CAS  Google Scholar 

  32. Majumdar D, Chatterjee D (1990) J Appl Phys 70:988–992

    Article  Google Scholar 

  33. Bosman HJM, Pijpers AP, Jaspers AWMA (1996) J Catal 161:551–559

    Article  CAS  Google Scholar 

  34. Dou X, Mohan D, Pittma CU Jr, Yang S (2012) Chem Engg J 198-199:236–245

    Article  CAS  Google Scholar 

  35. Sleigh C, Pijpers AP, Jaspers A, Coussens B, Meier RJ (1996) J Electron Spectros Relat Phenom 77:41–57

    Article  CAS  Google Scholar 

  36. Buyuklimanli TH, Simmons JH (1990) J Non-Cryst Solids 120:262–266

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. John Wiley and Sons, New York

    Google Scholar 

  38. Mandry MJ, Rosenblatt GR (1972) J Electrochem Soc 119:29–33

    Article  CAS  Google Scholar 

  39. Harrington DA (1996) J Electroanal Chem 403:11–24

    Article  Google Scholar 

  40. Shao HB, Wang JM, He WC, Zhang JQ, Cao CN (2005) Electrochem Comm 7:1429–1433

    Article  CAS  Google Scholar 

  41. Prasanna Venkatesh R, Ramanathan S (2010) J Solid State Electrochem 14:2057–2064

    Article  CAS  Google Scholar 

  42. Fletcher S (2009) J Solid State Electrochem 13:537–549

    Article  CAS  Google Scholar 

  43. Lowalekar V, Raghavan S (2004) J Mater Res 19:1149–1156

    Article  CAS  Google Scholar 

  44. Heakal FE, Mogoda AS, Mazhar AA, Ghoneim AA (1990) Corros 46:247–253

    Article  Google Scholar 

  45. Ghoneim AA (2004) Mater Corros 55:617–622

    Article  CAS  Google Scholar 

  46. Keddam M, Mattos OR, Takenouti H (1986) Electrochim Acta 31:1147–1158

    Article  CAS  Google Scholar 

  47. Keddam M, Mattos OR, Takenouti H (1986) Electrochim Acta 31:1159–1165

    Article  CAS  Google Scholar 

  48. Macdonald DD, Real S, Smedley SI, Urquidi-Macdonald M (1988) J Electrochem Soc 135:2410–2414

    Article  CAS  Google Scholar 

  49. Gregori J, Gimenez-Romero D, Garcia-Jareno JJ, Vicente F (2005) J Solid State Electrochem 9:83–90

    Article  CAS  Google Scholar 

  50. Gregori J, Gimenez-Romero D, Garcia-Jareno JJ, Vicente F (2006) J Solid State Electrochem 10:920–928

    Article  CAS  Google Scholar 

  51. Barsoukov E, Macdonald JR (eds) (2005) Impedance spectroscopy. John Wiley and Sons, New Jersy

    Google Scholar 

  52. Macdonald DD (2006) Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

  53. Orazem M, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley and Sons, New Jersy

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology, India, for providing the SEM facility to the Department of Chemical Engineering, Indian Institute of Technology Madras through the FIST program; Prof. M. Kamaraj, Department of Metallurgical and Materials Engineering, IIT-Madras, for the grain structure image; and Dr. U. Kamachi Mudali and Dr. Rani P. George, CSTG, IGCAR, Kalpakkam for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan Srinivasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrutha, M.S., Srinivasan, R. Kinetics of anodic dissolution of Zr in acidic fluoride media. J Solid State Electrochem 21, 91–102 (2017). https://doi.org/10.1007/s10008-016-3342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3342-0

Keywords

Navigation