Skip to main content
Log in

Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The SnO/SnO2 nanocomposites were synthesized using semisolvothermal reaction technique. These nanocomposites were prepared using different combination of solvents viz., ethanol, water, and ethylene glycol at 180 °C for 24 h. The synthesized nanocomposites were analyzed with various characterization techniques. Structural analysis indicates the formation of tetragonal phase of SnO2 for the sample prepared in ethanol, whereas for other solvent combinations, the mixture of SnO and SnO2 having tetragonal crystal structures were observed. The optical study shows enhanced absorbance in the visible region for all the prepared SnO/SnO2 nanocomposites. The observed band gap was found to be in the range of 3.0 to 3.25 eV. Microstructural determinations confirm the formation of nanostructures having spherical as well as rod-like morphology. The size of nanoparticles in ethanol-mediated solvent was found to be in the range of 5 to 7 nm. Thermogravimetric analysis indicate the weight gain around 1.3 wt% confirming the conversion of SnO to SnO2 material. The photocatalytic activity of synthesized nanocomposites was evaluated by following the aqueous methylene blue (MB) degradation. The sample prepared in ethylene glycol-mediated solvent showed highest photoactivity having apparent rate constant (Kapp) 0.62 × 10−2 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  2. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  3. JC Y, JG Y, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816

    Article  Google Scholar 

  4. Ng J, Pan JH, Sun DD (2011) Hierarchical assembly of anatase nanowhiskers and evaluation of their photocatalytic efficiency in comparison to various one dimensional TiO2 nanostructures. J Mater Chem 21:11844–11853

    Article  CAS  Google Scholar 

  5. He Z, Que W, He Y, Chen J, Xie H, Wang G (2012) Nanosphere assembled mesoporous titanium dioxide with advanced photocatalystic activity using absorbent cotton as template. J Mater Sci 47:7210–7216

    Article  CAS  Google Scholar 

  6. Martinez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145

    Article  CAS  Google Scholar 

  7. Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew Chem Int Ed 48:9180–9183

    Article  CAS  Google Scholar 

  8. Wang C, Zhou Y, Ge M, Xu X, Zhang Z, Jiang JZ (2009) Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J Am Chem Soc 132:46–47

    Article  Google Scholar 

  9. Wang Z, Luan D, Boey FY, Lou XW (2011) Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J Am Chem Soc 133:4738–4741

    Article  CAS  Google Scholar 

  10. Zheng Y, Cheng Y, Wang Y, Zhou L, Bao F, Jia CJ (2006) Metastable gamma-MnS hierarchical architectures: synthesis, characterization, and growth mechanism. J Phys Chem B 110:8284–8288

    Article  CAS  Google Scholar 

  11. Zhang XL, Kang YS (2006) Large-scale synthesis of perpendicular side-faceted one-dimensional ZnO nanocrystals. Inorg Chem 45:4186–4190

    Article  CAS  Google Scholar 

  12. Wang W, Huang J, Ren Z (2005) Synthesis of germanium nanocubes by a low-temperature inverse micelle solvothermal technique. Langmuir 21:751–754

    Article  CAS  Google Scholar 

  13. Mitra S, Das S, Mandal K, Chaudhuri S (2007) Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology 18:275608

    Article  Google Scholar 

  14. Wang D, Song CJ (2005) Controllable synthesis of ZnO nanorod and prism arrays in a large area. J Phys Chem B 109:12697–12700

    Article  CAS  Google Scholar 

  15. Zhang P, Gao L (2003) Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langmuir 19:208–210

    Article  Google Scholar 

  16. Zou G, Xiong K, Jiang C, Li H, Li T, Du J, Qian Y (2005) Fe3O4 nanocrystals with novel fractal. J Phys Chem B 109:18356–18360

    Article  CAS  Google Scholar 

  17. Yang HG, Zeng HC (2004) Self construction of hollow SnO2 octahedra based on two dimensional aggregation of nanocrystallites. Angew Chem Int Ed 43:5930–5933

    Article  CAS  Google Scholar 

  18. Li YD, Duan XF, Qian YT, Yang L, Ji MR, Li CW (1997) Solvothermal co-reduction route to the nanocrystalline III–V semiconductor InAs. J Am Chem Soc 119:7869–7870

    Article  CAS  Google Scholar 

  19. Cao M, He X, Chen J, Hu C (2007) Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Cryst Growth Des 7:170–174

    Article  CAS  Google Scholar 

  20. Leite ER, Weber IT, Longo E, Varela JA (2000) A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv Mater 12:966–968

    Article  Google Scholar 

  21. Jeong JW, Huh JW, Lee JI, Chu HI, Pak JJ, Ju BK (2010) Interdigitated electrode geometry effects on the performance of organic photoconductors for optical sensor applications. Thin Solid Films 518:6343–6347

    Article  CAS  Google Scholar 

  22. Seftel EM, Popovici E, Mertens M, Stefaniak EA, Grieken RV, Cool P, Vansant EF (2008) SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Appl Catal B Environ 84:699–705

    Article  CAS  Google Scholar 

  23. Wang C, Zhao JC, Wang XM, Mai BX, Sheng GY, Peng PA, Fu JM (2002) Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl Catal B Environ 39:269–279

    Article  CAS  Google Scholar 

  24. Zhu H, Yang D, Yu G, Zhang H, Yao K (2006) A simple hydrothermal route for synthesizing SnO2 quantum dots. Nanotechnology 17:2386–2389

    Article  CAS  Google Scholar 

  25. Cheng G, Wang J, Liu X, Huang K (2006) Self-assembly synthesis of single-crystalline tin oxide nanostructures by a poly(acrylic acid)-assisted solvothermal process. J Phys Chem B 110:16208–16211

    Article  CAS  Google Scholar 

  26. Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177

    Article  CAS  Google Scholar 

  27. Velásquez C, Ojeda ML, Campero A, Esparza JM, Rojas F (2006) Surfactantless synthesis and textural properties of self-assembled mesoporous SnO2. Nanotechnology 17:3347–3358

    Article  Google Scholar 

  28. Das S, Chaudhuri S, Maji S (2008) Ethanol-water mediated solvothermal synthesis of cube and pyramid shaped nanostructured tin oxide. J Phys Chem C 112(16):6213–6219

    Article  CAS  Google Scholar 

  29. Varley JB, Schleife A, Janotti A, Van de Walle CG (2013) Ambipolar doping in SnO. Applied. Phys Lett 103:082118

    Google Scholar 

  30. Li L, Zhang C, Chen W (2015) Fabrication of SnO2–SnO nanocomposites with p–n heterojunctions for the low temperature sensing of NO2 gas. Nanomedicine 7:12133–12142

    CAS  Google Scholar 

  31. Sinha AK, Manna PK, Pradhan M, Mondal C, Yusuf SM, Pal T (2014) Tin oxide with a p–n heterojunction ensures both UV and visible light photocatalytic activity. RSC Adv 4:208–211

    Article  CAS  Google Scholar 

  32. Zheng H, CD G, Wang XL, Tu JP (2014) Fast synthesis and optical property of SnO nanoparticles from choline chloride-based ionic liquid. J Nanopart Res 16:2288

    Article  Google Scholar 

  33. Zhang B, Zheng QB, Huang ZD, SW O, Kim JK (2011) SnO2–graphene–carbon nanotube mixture for anode material with improved rate capacities. Carbon 49:4524–4534

    Article  CAS  Google Scholar 

  34. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  35. Geurts J, Rau S, Richter W, Schmitte FJ (1984) SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies. Thin Solid Films 121:217–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Electronics and Information Technology (DeitY) and Department of Science & Technology (DST), New Delhi, India for providing financial support to undertake this work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Arbuj, S., Waghadkar, Y. et al. Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity. J Solid State Electrochem 21, 9–17 (2017). https://doi.org/10.1007/s10008-016-3328-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3328-y

Keywords

Navigation